Representations and Conjugacy Classes of Semisimple Quasitriangular Hopf Algebras
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we give two general formulae for the Müger centralizers in the category of representations of a semisimple quasitriangular Hopf algebra. The first formula is given in the terms of the Drinfeld map associated to the quasitriangular Hopf algebra. The second formula for the Müger centralizer is given in the terms of the conjugacy classes introduced by Cohen and Westreich in [J. Algebra 283 (2005), 42–62]. In the case of a factorizable Hopf algebra these formulae extend some particular cases obtained by the author in [Math. Z. 279 (2015), 227–240].
Keywords: quasi-triangular Hopf algebras, centralizers, braided fusion categories
Mots-clés : normal coideal subalgebras.
@article{SIGMA_2020_16_a38,
     author = {Sebastian Burciu},
     title = {Representations and {Conjugacy} {Classes} of {Semisimple} {Quasitriangular} {Hopf} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a38/}
}
TY  - JOUR
AU  - Sebastian Burciu
TI  - Representations and Conjugacy Classes of Semisimple Quasitriangular Hopf Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a38/
LA  - en
ID  - SIGMA_2020_16_a38
ER  - 
%0 Journal Article
%A Sebastian Burciu
%T Representations and Conjugacy Classes of Semisimple Quasitriangular Hopf Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a38/
%G en
%F SIGMA_2020_16_a38
Sebastian Burciu. Representations and Conjugacy Classes of Semisimple Quasitriangular Hopf Algebras. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a38/

[1] Burciu S., Kernels of representations and coideal subalgebras of Hopf algebras, Glasg. Math. J., 54 (2012), 107–119, arXiv: 1012.3096 | DOI | MR | Zbl

[2] Burciu S., “Normal coideal subalgebras of semisimple Hopf algebras”, J. Phys. Conf. Ser., 346 (2012), 012004, 10 pp. | DOI | MR

[3] Burciu S., “On normal Hopf subalgebras of semisimple Hopf algebras”, Algebr. Represent. Theory, 15 (2012), 491–506, arXiv: 0811.3738 | DOI | MR | Zbl

[4] Burciu S., “On a symmetry of Müger's centralizer for the Drinfeld double of a semisimple Hopf algebra”, Math. Z., 279 (2015), 227–240, arXiv: 1312.3152 | DOI | MR | Zbl

[5] Burciu S., “On Müger's centralizer in braided equivariantized fusion categories”, J. Algebra, 466 (2016), 100–140, arXiv: 1405.0240 | DOI | MR | Zbl

[6] Cohen M., Westreich S., “Some interrelations between Hopf algebras and their duals”, J. Algebra, 283 (2005), 42–62 | DOI | MR | Zbl

[7] Cohen M., Westreich S., “Higman ideals and Verlinde-type formulas for Hopf algebras”, Ring and Module Theory, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010, 91–114 | DOI | MR | Zbl

[8] Cohen M., Westreich S., “Recovering information from character tables of Hopf algebras: normality, dimensions and quotients”, Hopf Algebras and Tensor Categories, Contemp. Math., 585, Amer. Math. Soc., Providence, RI, 2013, 213–226 | DOI | MR | Zbl

[9] Cohen M., Westreich S., “Character tables and normal left coideal subalgebras”, J. Pure Appl. Algebra, 218 (2014), 1845–1866, arXiv: 1212.5785 | DOI | MR | Zbl

[10] Cohen M., Westreich S., “Solvability for semisimple Hopf algebras via integrals”, J. Algebra, 472 (2017), 67–94, arXiv: 1604.07550 | DOI | MR | Zbl

[11] Drinfeld V., Gelaki S., Nikshych D., Ostrik V., Group-theoretical properties of nilpotent modular categories, arXiv: 0704.0195

[12] Drinfeld V., Gelaki S., Nikshych D., Ostrik V., “On braided fusion categories. I”, Selecta Math. (N.S.), 16 (2010), 1–119, arXiv: 0906.0620 | DOI | MR | Zbl

[13] El Alaoui A., “The character table for a Hopf algebra arising from the Drinfel'd double”, J. Algebra, 265 (2003), 478–495 | DOI | MR | Zbl

[14] Etingof P., Gelaki S., “Some properties of finite-dimensional semisimple Hopf algebras”, Math. Res. Lett., 5 (1998), 191–197, arXiv: q-alg/9712033 | DOI | MR | Zbl

[15] Etingof P., Nikshych D., Ostrik V., “On fusion categories”, Ann. of Math., 162 (2005), 581–642, arXiv: math.QA/0203060 | DOI | MR | Zbl

[16] Gelaki S., Naidu D., Nikshych D., “Centers of graded fusion categories”, Algebra Number Theory, 3 (2009), 959–990, arXiv: 0905.3117 | DOI | MR | Zbl

[17] Kac G.I., Paljutkin V.G., “Finite ring groups”, Trudy Moskov. Mat. Obšč, 15, 1966, 224–261 | MR

[18] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[19] Koppinen M., “Coideal subalgebras in Hopf algebras: freeness, integrals, smash products”, Comm. Algebra, 21 (1993), 427–444 | DOI | MR | Zbl

[20] Larson R.G., “Characters of Hopf algebras”, J. Algebra, 17 (1971), 352–368 | DOI | MR | Zbl

[21] Larson R.G., Radford D.E., “Finite-dimensional cosemisimple Hopf algebras in characteristic $0$ are semisimple”, J. Algebra, 117 (1988), 267–289 | DOI | MR | Zbl

[22] Lorenz M., “On the class equation for Hopf algebras”, Proc. Amer. Math. Soc., 126 (1998), 2841–2844 | DOI | MR | Zbl

[23] Masuoka A., “Semisimple Hopf algebras of dimension $6$, $8$”, Israel J. Math., 92 (1995), 361–373 | DOI | MR | Zbl

[24] Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR | Zbl

[25] Müger M., “On the structure of modular categories”, Proc. London Math. Soc., 87 (2003), 291–308, arXiv: math.CT/0201017 | DOI | MR | Zbl

[26] Naidu D., Nikshych D., Witherspoon S., “Fusion subcategories of representation categories of twisted quantum doubles of finite groups”, Int. Math. Res. Not., 2009 (2009), 4183–4219, arXiv: 0810.0032 | DOI | MR | Zbl

[27] Natale S., “$R$-matrices and Hopf algebra quotients”, Int. Math. Res. Not., 2006 (2006), 47182, 18 pp., arXiv: math.QA/0605731 | DOI | MR | Zbl

[28] Schneider H.-J., “Some properties of factorizable Hopf algebras”, Proc. Amer. Math. Soc., 129 (2001), 1891–1898 | DOI | MR | Zbl

[29] Skryabin S., “Projectivity and freeness over comodule algebras”, Trans. Amer. Math. Soc., 359 (2007), 2597–2623, arXiv: math.RA/0610657 | DOI | MR | Zbl

[30] Zhu Y., “Hopf algebras of prime dimension”, Int. Math. Res. Not., 1994 (1994), 53–59 | DOI | MR | Zbl

[31] Zhu Y., “A commuting pair in Hopf algebras”, Proc. Amer. Math. Soc., 125 (1997), 2847–2851 | DOI | MR | Zbl