Mots-clés : normal coideal subalgebras.
@article{SIGMA_2020_16_a38,
author = {Sebastian Burciu},
title = {Representations and {Conjugacy} {Classes} of {Semisimple} {Quasitriangular} {Hopf} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a38/}
}
Sebastian Burciu. Representations and Conjugacy Classes of Semisimple Quasitriangular Hopf Algebras. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a38/
[1] Burciu S., Kernels of representations and coideal subalgebras of Hopf algebras, Glasg. Math. J., 54 (2012), 107–119, arXiv: 1012.3096 | DOI | MR | Zbl
[2] Burciu S., “Normal coideal subalgebras of semisimple Hopf algebras”, J. Phys. Conf. Ser., 346 (2012), 012004, 10 pp. | DOI | MR
[3] Burciu S., “On normal Hopf subalgebras of semisimple Hopf algebras”, Algebr. Represent. Theory, 15 (2012), 491–506, arXiv: 0811.3738 | DOI | MR | Zbl
[4] Burciu S., “On a symmetry of Müger's centralizer for the Drinfeld double of a semisimple Hopf algebra”, Math. Z., 279 (2015), 227–240, arXiv: 1312.3152 | DOI | MR | Zbl
[5] Burciu S., “On Müger's centralizer in braided equivariantized fusion categories”, J. Algebra, 466 (2016), 100–140, arXiv: 1405.0240 | DOI | MR | Zbl
[6] Cohen M., Westreich S., “Some interrelations between Hopf algebras and their duals”, J. Algebra, 283 (2005), 42–62 | DOI | MR | Zbl
[7] Cohen M., Westreich S., “Higman ideals and Verlinde-type formulas for Hopf algebras”, Ring and Module Theory, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010, 91–114 | DOI | MR | Zbl
[8] Cohen M., Westreich S., “Recovering information from character tables of Hopf algebras: normality, dimensions and quotients”, Hopf Algebras and Tensor Categories, Contemp. Math., 585, Amer. Math. Soc., Providence, RI, 2013, 213–226 | DOI | MR | Zbl
[9] Cohen M., Westreich S., “Character tables and normal left coideal subalgebras”, J. Pure Appl. Algebra, 218 (2014), 1845–1866, arXiv: 1212.5785 | DOI | MR | Zbl
[10] Cohen M., Westreich S., “Solvability for semisimple Hopf algebras via integrals”, J. Algebra, 472 (2017), 67–94, arXiv: 1604.07550 | DOI | MR | Zbl
[11] Drinfeld V., Gelaki S., Nikshych D., Ostrik V., Group-theoretical properties of nilpotent modular categories, arXiv: 0704.0195
[12] Drinfeld V., Gelaki S., Nikshych D., Ostrik V., “On braided fusion categories. I”, Selecta Math. (N.S.), 16 (2010), 1–119, arXiv: 0906.0620 | DOI | MR | Zbl
[13] El Alaoui A., “The character table for a Hopf algebra arising from the Drinfel'd double”, J. Algebra, 265 (2003), 478–495 | DOI | MR | Zbl
[14] Etingof P., Gelaki S., “Some properties of finite-dimensional semisimple Hopf algebras”, Math. Res. Lett., 5 (1998), 191–197, arXiv: q-alg/9712033 | DOI | MR | Zbl
[15] Etingof P., Nikshych D., Ostrik V., “On fusion categories”, Ann. of Math., 162 (2005), 581–642, arXiv: math.QA/0203060 | DOI | MR | Zbl
[16] Gelaki S., Naidu D., Nikshych D., “Centers of graded fusion categories”, Algebra Number Theory, 3 (2009), 959–990, arXiv: 0905.3117 | DOI | MR | Zbl
[17] Kac G.I., Paljutkin V.G., “Finite ring groups”, Trudy Moskov. Mat. Obšč, 15, 1966, 224–261 | MR
[18] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[19] Koppinen M., “Coideal subalgebras in Hopf algebras: freeness, integrals, smash products”, Comm. Algebra, 21 (1993), 427–444 | DOI | MR | Zbl
[20] Larson R.G., “Characters of Hopf algebras”, J. Algebra, 17 (1971), 352–368 | DOI | MR | Zbl
[21] Larson R.G., Radford D.E., “Finite-dimensional cosemisimple Hopf algebras in characteristic $0$ are semisimple”, J. Algebra, 117 (1988), 267–289 | DOI | MR | Zbl
[22] Lorenz M., “On the class equation for Hopf algebras”, Proc. Amer. Math. Soc., 126 (1998), 2841–2844 | DOI | MR | Zbl
[23] Masuoka A., “Semisimple Hopf algebras of dimension $6$, $8$”, Israel J. Math., 92 (1995), 361–373 | DOI | MR | Zbl
[24] Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR | Zbl
[25] Müger M., “On the structure of modular categories”, Proc. London Math. Soc., 87 (2003), 291–308, arXiv: math.CT/0201017 | DOI | MR | Zbl
[26] Naidu D., Nikshych D., Witherspoon S., “Fusion subcategories of representation categories of twisted quantum doubles of finite groups”, Int. Math. Res. Not., 2009 (2009), 4183–4219, arXiv: 0810.0032 | DOI | MR | Zbl
[27] Natale S., “$R$-matrices and Hopf algebra quotients”, Int. Math. Res. Not., 2006 (2006), 47182, 18 pp., arXiv: math.QA/0605731 | DOI | MR | Zbl
[28] Schneider H.-J., “Some properties of factorizable Hopf algebras”, Proc. Amer. Math. Soc., 129 (2001), 1891–1898 | DOI | MR | Zbl
[29] Skryabin S., “Projectivity and freeness over comodule algebras”, Trans. Amer. Math. Soc., 359 (2007), 2597–2623, arXiv: math.RA/0610657 | DOI | MR | Zbl
[30] Zhu Y., “Hopf algebras of prime dimension”, Int. Math. Res. Not., 1994 (1994), 53–59 | DOI | MR | Zbl
[31] Zhu Y., “A commuting pair in Hopf algebras”, Proc. Amer. Math. Soc., 125 (1997), 2847–2851 | DOI | MR | Zbl