Mots-clés : $q$-Serre relations, $q$-Onsager algebra.
@article{SIGMA_2020_16_a36,
author = {Sarah Post and Paul Terwilliger},
title = {An {Infinite-Dimensional} $\square_q${-Module} {Obtained} from the $q${-Shuffle} {Algebra} for {Affine} $\mathfrak{sl}_2$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a36/}
}
TY - JOUR
AU - Sarah Post
AU - Paul Terwilliger
TI - An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2020
VL - 16
UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a36/
LA - en
ID - SIGMA_2020_16_a36
ER -
%0 Journal Article
%A Sarah Post
%A Paul Terwilliger
%T An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a36/
%G en
%F SIGMA_2020_16_a36
Sarah Post; Paul Terwilliger. An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a36/
[1] Baseilhac P., “Deformed Dolan–Grady relations in quantum integrable models”, Nuclear Phys. B, 709 (2005), 491–521, arXiv: hep-th/0404149 | DOI | MR | Zbl
[2] Baseilhac P., “An integrable structure related with tridiagonal algebras”, Nuclear Phys. B, 705 (2005), 605–619, arXiv: math-ph/0408025 | DOI | MR | Zbl
[3] Baseilhac P., “A family of tridiagonal pairs and related symmetric functions”, J. Phys. A: Math. Gen., 39 (2006), 11773–11791, arXiv: math-ph/0604035 | DOI | MR | Zbl
[4] Baseilhac P., “The $q$-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach”, Nuclear Phys. B, 754 (2006), 309–328, arXiv: math-ph/0604036 | DOI | MR | Zbl
[5] Baseilhac P., Belliard S., “Generalized $q$-Onsager algebras and boundary affine Toda field theories”, Lett. Math. Phys., 93 (2010), 213–228, arXiv: 0906.1215 | DOI | MR | Zbl
[6] Baseilhac P., Belliard S., “The half-infinite XXZ chain in Onsager's approach”, Nuclear Phys. B, 873 (2013), 550–584, arXiv: 1211.6304 | DOI | MR | Zbl
[7] Baseilhac P., Koizumi K., “A deformed analogue of Onsager's symmetry in the $XXZ$ open spin chain”, J. Stat. Mech. Theory Exp., 2005 (2005), P10005, 15 pp., arXiv: hep-th/0507053 | DOI | MR | Zbl
[8] Baseilhac P., Koizumi K., “A new (in)finite-dimensional algebra for quantum integrable models”, Nuclear Phys. B, 720 (2005), 325–347, arXiv: math-ph/0503036 | DOI | MR | Zbl
[9] Baseilhac P., Koizumi K., “Exact spectrum of the $XXZ$ open spin chain from the $q$-Onsager algebra representation theory”, J. Stat. Mech. Theory Exp., 2007 (2007), P09006, 27 pp., arXiv: hep-th/0703106 | DOI | MR | Zbl
[10] Baseilhac P., Kolb S., “Braid group action and root vectors for the $q$-Onsager algebra”, Transform. Groups (to appear) , arXiv: 1706.08747 | DOI | MR
[11] Baseilhac P., Shigechi K., “A new current algebra and the reflection equation”, Lett. Math. Phys., 92 (2010), 47–65, arXiv: 0906.1482 | DOI | MR | Zbl
[12] Baseilhac P., Vu T.T., “Analogues of Lusztig's higher order relations for the $q$-Onsager algebra”, J. Math. Phys., 55 (2014), 081707, 21 pp., arXiv: 1312.3433 | DOI | MR | Zbl
[13] Green J.A., Shuffle algebras, Lie algebras and quantum groups, Textos de Matemática, Série B, 9, Universidade de Coimbra, Departamento de Matemática, Coimbra, 1995 | MR
[14] Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl
[15] Ito T., Tanabe K., Terwilliger P., “Some algebra related to $P$- and $Q$-polynomial association schemes”, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001, 167–192, arXiv: math.CO/0406556 | DOI | MR | Zbl
[16] Ito T., Terwilliger P., “Tridiagonal pairs of $q$-Racah type”, J. Algebra, 322 (2009), 68–93, arXiv: 0807.3990 | DOI | MR | Zbl
[17] Ito T., Terwilliger P., “The augmented tridiagonal algebra”, Kyushu J. Math., 64 (2010), 81–144, arXiv: 0904.2889 | DOI | MR | Zbl
[18] Kashiwara M., “On crystal bases of the $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI | MR | Zbl
[19] Leclerc B., “Dual canonical bases, quantum shuffles and $q$-characters”, Math. Z., 246 (2004), 691–732, arXiv: math.QA/0209133 | DOI | MR | Zbl
[20] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993 | DOI | MR | Zbl
[21] Rosso M., “Groupes quantiques et algèbres de battage quantiques”, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 145–148 | MR | Zbl
[22] Rosso M., “Quantum groups and quantum shuffles”, Invent. Math., 133 (1998), 399–416 | DOI | MR | Zbl
[23] Rotman J.J., Advanced modern algebra, Graduate Studies in Mathematics, 114, 2nd ed., Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl
[24] Terwilliger P., “The subconstituent algebra of an association scheme. III”, J. Algebraic Combin., 2 (1993), 177–210 | DOI | MR | Zbl
[25] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl
[26] Terwilliger P., “Two relations that generalize the $q$-Serre relations and the Dolan–Grady relations”, Physics and Combinatorics (Nagoya, 1999), World Sci. Publ., River Edge, NJ, 2001, 377–398, arXiv: math.QA/0307016 | DOI | MR | Zbl
[27] Terwilliger P., “An algebraic approach to the Askey scheme of orthogonal polynomials”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 255–330, arXiv: math.QA/0408390 | DOI | MR | Zbl
[28] Terwilliger P., “The universal Askey–Wilson algebra”, SIGMA, 7 (2011), 069, 24 pp., arXiv: 1104.2813 | DOI | MR | Zbl
[29] Terwilliger P., “The $q$-Onsager algebra and the positive part of $U_q\big(\widehat{\mathfrak{sl}}_2\big)$”, Linear Algebra Appl., 521 (2017), 19–56, arXiv: 1506.08666 | DOI | MR | Zbl
[30] Terwilliger P., “The Lusztig automorphism of the $q$-Onsager algebra”, J. Algebra, 506 (2018), 56–75, arXiv: 1706.05546 | DOI | MR | Zbl
[31] Terwilliger P., “The $q$-Onsager algebra and the universal Askey–Wilson algebra”, SIGMA, 14 (2018), 044, 18 pp., arXiv: 1801.06083 | DOI | MR | Zbl
[32] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl
[33] Yang Y., “Finite-dimensional irreducible $\square_q$-modules and their Drinfel'd polynomials”, Linear Algebra Appl., 537 (2018), 160–190, arXiv: 1706.00518 | DOI | MR | Zbl
[34] Yang Y., “Some $q$-exponential formulas for finite-dimensional $\square_q$-modules”, Algebr. Represent. Theory (to appear) , arXiv: 1612.02864 | DOI | MR