@article{SIGMA_2020_16_a33,
author = {Oleg Evnin},
title = {Breathing {Modes,} {Quartic} {Nonlinearities} and {Effective} {Resonant} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a33/}
}
Oleg Evnin. Breathing Modes, Quartic Nonlinearities and Effective Resonant Systems. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a33/
[1] Balasubramanian V., Buchel A., Green S.R., Lehner L., Liebling S.L., “Holographic thermalization, stability of anti-de Sitter space, and the Fermi–Pasta–Ulam paradox”, Phys. Rev. Lett., 113 (2014), 071601, 5 pp., arXiv: 1403.6471 | DOI
[2] Białynicki-Birula I., Białynicka-Birula Z., “Center-of-mass motion in the many-body theory of Bose–Einstein condensates”, Phys. Rev. A, 65 (2002), 063606, 6 pp. | DOI
[3] Biasi A., Bizoń P., Craps B., Evnin O., “Exact lowest-Landau-level solutions for vortex precession in Bose–Einstein condensates”, Phys. Rev. A, 96 (2017), 053615, 6 pp., arXiv: 1705.00867 | DOI
[4] Biasi A., Bizoń P., Craps B., Evnin O., “Two infinite families of resonant solutions for the Gross–Pitaevskii equation”, Phys. Rev. E, 98 (2018), 032222, 12 pp., arXiv: 1805.01775 | DOI | MR
[5] Biasi A., Bizoń P., Evnin O., “Solvable cubic resonant systems”, Comm. Math. Phys., 369 (2019), 433–456, arXiv: 1805.03634 | DOI | MR | Zbl
[6] Biasi A., Bizoń P., Evnin O., “Complex plane representations and stationary states in cubic and quintic resonant systems”, J. Phys. A: Math. Theor., 52 (2019), 435201, 22 pp., arXiv: 1904.09575 | DOI | MR
[7] Biasi A.F., Mas J., Paredes A., “Delayed collapses of Bose–Einstein condensates in relation to anti-de Sitter gravity”, Phys. Rev. E, 95 (2017), 032216, 8 pp., arXiv: 1610.04866 | DOI
[8] Bizoń P., Craps B., Evnin O., Hunik D., Luyten V., Maliborski M., “Conformal flow on ${\rm S}^3$ and weak field integrability in ${\rm AdS}_4$”, Comm. Math. Phys., 353 (2017), 1179–1199, arXiv: 1608.07227 | DOI | MR | Zbl
[9] Bizoń P., Evnin O., Ficek F., “A nonrelativistic limit for {A}d{S} perturbations”, J. High Energy Phys., 2018:12 (2018), 113, 19 pp., arXiv: 1810.10574 | DOI | MR | Zbl
[10] Bizoń P., Hunik-Kostyra D., Pelinovsky D., “Ground state of the conformal flow on ${\mathbb S}^3$”, Comm. Pure Appl. Math., 72 (2019), 1123–1151, arXiv: 1706.07726 | DOI | MR | Zbl
[11] Bizoń P., Hunik-Kostyra D., Pelinovsky D., “Stationary states of the cubic conformal flow on ${\mathbb S}^3$”, Discrete Contin. Dyn. Syst., 40 (2020), 1–32, arXiv: 1807.00426 | DOI | MR | Zbl
[12] Bizoń P., Maliborski M., Rostworowski A., “Resonant dynamics and the instability of anti-de Sitter spacetime”, Phys. Rev. Lett., 115 (2015), 081103, 5 pp., arXiv: 1506.03519 | DOI
[13] Bizoń P., Rostworowski A., “On weakly turbulent instability of anti-de Sitter space”, Phys. Rev. Lett., 107 (2011), 031102, 4 pp., arXiv: 1104.3702 | DOI
[14] Bizoń P., Rostworowski A., “Gravitational turbulent instability of ${\rm AdS}_5$”, Acta Phys. Polon. B, 48 (2017), 1375–1381, arXiv: 1710.03438 | DOI | MR
[15] Choptuik M.W., Dias O.J.C., Santos J.E., Way B., “Collapse and nonlinear instability of AdS space with angular momentum”, Phys. Rev. Lett., 119 (2017), 191104, 6 pp., arXiv: 1706.06101 | DOI | MR
[16] Craps B., Evnin O., “AdS (in)stability: an analytic approach”, Fortschr. Phys., 64 (2016), 336–344, arXiv: 1510.07836 | DOI | MR | Zbl
[17] Craps B., Evnin O., Luyten V., “Maximally rotating waves in AdS and on spheres”, J. High Energy Phys., 2017:9 (2017), 059, 18 pp., arXiv: 1707.08501 | DOI | MR
[18] Craps B., Evnin O., Vanhoof J., “Renormalization group, secular term resummation and AdS (in)stability”, J. High Energy Phys., 2014:10 (2014), 048, 31 pp., arXiv: 1407.6273 | DOI | MR | Zbl
[19] Craps B., Evnin O., Vanhoof J., “Renormalization, averaging, conservation laws and AdS (in)stability”, J. High Energy Phys., 2015:1 (2015), 108, 28 pp., arXiv: 1412.3249 | DOI | MR
[20] Dias O.J.C., Santos J.E., “AdS nonlinear instability: breaking spherical and axial symmetries”, Classical Quantum Gravity, 35 (2018), 185006, 40 pp., arXiv: 1705.03065 | DOI | MR | Zbl
[21] Evnin O., Nivesvivat R., “AdS perturbations, isometries, selection rules and the Higgs oscillator”, J. High Energy Phys., 2016:1 (2016), 151, 25 pp., arXiv: 1512.00349 | DOI | MR | Zbl
[22] Fodor G., Forgács P., “Anti–de Sitter geon families”, Phys. Rev. D, 96 (2017), 084027, 31 pp., arXiv: 1708.09228 | DOI | MR
[23] García-Ripoll J.J., Pérez-García V.M., Vekslerchik V., “Construction of exact solutions by spatial translations in inhomogeneous nonlinear Schrödinger equations”, Phys. Rev. E, 64 (2001), 056602, 6 pp. | DOI
[24] Gérard P., Germain P., Thomann L., “On the cubic lowest Landau level equation”, Arch. Ration. Mech. Anal., 231 (2019), 1073–1128, arXiv: 1709.04276 | DOI | MR | Zbl
[25] Germain P., Hani Z., Thomann L., “On the continuous resonant equation for NLS I Deterministic analysis”, J. Math. Pures Appl., 105 (2016), 131–163, arXiv: 1501.03760 | DOI | MR | Zbl
[26] Kuksin S., Maiocchi A., “The effective equation method”, New Approaches to Nonlinear Waves, Lecture Notes in Phys., 908, Springer, Cham, 2016, 21–41, arXiv: 1501.04175 | DOI | MR
[27] Martinon G., Fodor G., Grandclément P., Forgács P., “Gravitational geons in asymptotically anti-de Sitter spacetimes”, Classical Quantum Gravity, 34 (2017), 125012, 30 pp., arXiv: 1701.09100 | DOI | MR | Zbl
[28] Murdock J.A., Perturbations. Theory and methods, Classics in Applied Mathematics, 27, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999 | DOI | MR | Zbl
[29] Niederer U., “The maximal kinematical invariance group of the free Schrödinger equation”, Helv. Phys. Acta, 45 (1972), 802–810 | MR
[30] Ohashi K., Fujimori T., Nitta M., “Conformal symmetry of trapped Bose–Einstein condensates and massive Nambu–Goldstone modes”, Phys. Rev. A, 96 (2017), 051601, 5 pp., arXiv: 1705.09118 | DOI
[31] Pitaevskii L.P., “Dynamics of collapse of a confined Bose gas”, Phys. Lett. A, 221 (1996), 14–18, arXiv: cond-mat/9605119 | DOI
[32] Pitaevskii L.P., Rosch A., “Breathing modes and hidden symmetry of trapped atoms in two dimensions”, Phys. Rev. A, 55 (1997), R853–R856, arXiv: cond-mat/9608135 | DOI
[33] Rostworowski A., “Higher order perturbations of anti-de Sitter space and time-periodic solutions of vacuum Einstein equations”, Phys. Rev. D, 95 (2017), 124043, 16 pp., arXiv: 1701.07804 | DOI | MR
[34] Saint-Jalm R., Castilho P.C.M., Le Cerf E., Bakkali-Hassani B., Ville J.-L., Nascimbene S., Beugnon J., Dalibard J., “Dynamical symmetry and breathers in a two-dimensional Bose gas”, Phys. Rev. X, 9 (2019), 021035, 15 pp., arXiv: 1903.04528 | DOI
[35] Shastry B.S., “A class of parameter-dependent commuting matrices”, J. Phys. A: Math. Gen., 38 (2005), L431–L437, arXiv: cond-mat/0501502 | DOI | MR | Zbl
[36] Shastry B.S., “Parameter-dependent commuting matrices, Plücker relations and related quantum glass models”, J. Phys. A: Math. Theor., 44 (2011), 052001, 11 pp., arXiv: 1010.3445 | DOI | MR | Zbl
[37] Yuzbashyan E.A., Shastry B.S., “Quantum integrability in systems with finite number of levels”, J. Stat. Phys., 150 (2013), 704–721, arXiv: 1111.3375 | DOI | MR | Zbl