Nonnegative Scalar Curvature and Area Decreasing Maps
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\big(M,g^{TM}\big)$ be a noncompact complete spin Riemannian manifold of even dimension $n$, with $k^{TM}$ denote the associated scalar curvature. Let $f\colon M\rightarrow S^{n}(1)$ be a smooth area decreasing map, which is locally constant near infinity and of nonzero degree. We show that if $k^{TM}\geq n(n-1)$ on the support of ${\rm d}f$, then $ \inf \big(k^{TM}\big)0$. This answers a question of Gromov. We use a simple deformation of the Dirac operator to prove the result. The odd dimensional analogue is also presented.
Keywords: scalar curvature, spin manifold, area decreasing map.
@article{SIGMA_2020_16_a32,
     author = {Weiping Zhang},
     title = {Nonnegative {Scalar} {Curvature} and {Area} {Decreasing} {Maps}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a32/}
}
TY  - JOUR
AU  - Weiping Zhang
TI  - Nonnegative Scalar Curvature and Area Decreasing Maps
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a32/
LA  - en
ID  - SIGMA_2020_16_a32
ER  - 
%0 Journal Article
%A Weiping Zhang
%T Nonnegative Scalar Curvature and Area Decreasing Maps
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a32/
%G en
%F SIGMA_2020_16_a32
Weiping Zhang. Nonnegative Scalar Curvature and Area Decreasing Maps. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a32/

[1] Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. II, Progr. Math., 132, Birkhäuser Boston, Boston, MA, 1996, 1–213 | DOI | MR | Zbl

[2] Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612

[3] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 58 (1983), 83–196 | DOI | MR | Zbl

[4] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[5] Lichnerowicz A., “Spineurs harmoniques”, C. R. Acad. Sci. Paris, 257 (1963), 7–9 | MR | Zbl

[6] Llarull M., “Sharp estimates and the Dirac operator”, Math. Ann., 310 (1998), 55–71 | DOI | MR | Zbl

[7] Quillen D., “Superconnections and the Chern character”, Topology, 24 (1985), 89–95 | DOI | MR | Zbl

[8] Zhang W., “Positive scalar curvature on foliations: the enlargeability”, Geometric Analysis, in Honor of Gang Tian's 60th Birthday, Progr. Math., 333, Birkhäuser, Cham, 2020, 537–544, arXiv: 1703.04313 | DOI