@article{SIGMA_2020_16_a32,
author = {Weiping Zhang},
title = {Nonnegative {Scalar} {Curvature} and {Area} {Decreasing} {Maps}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a32/}
}
Weiping Zhang. Nonnegative Scalar Curvature and Area Decreasing Maps. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a32/
[1] Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. II, Progr. Math., 132, Birkhäuser Boston, Boston, MA, 1996, 1–213 | DOI | MR | Zbl
[2] Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612
[3] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 58 (1983), 83–196 | DOI | MR | Zbl
[4] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[5] Lichnerowicz A., “Spineurs harmoniques”, C. R. Acad. Sci. Paris, 257 (1963), 7–9 | MR | Zbl
[6] Llarull M., “Sharp estimates and the Dirac operator”, Math. Ann., 310 (1998), 55–71 | DOI | MR | Zbl
[7] Quillen D., “Superconnections and the Chern character”, Topology, 24 (1985), 89–95 | DOI | MR | Zbl
[8] Zhang W., “Positive scalar curvature on foliations: the enlargeability”, Geometric Analysis, in Honor of Gang Tian's 60th Birthday, Progr. Math., 333, Birkhäuser, Cham, 2020, 537–544, arXiv: 1703.04313 | DOI