Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch–Riemann–Roch in Genus 0
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extract genus 0 consequences of the all genera quantum HRR formula proved in Part IX. This includes re-proving and generalizing the adelic characterization of genus 0 quantum K-theory found in [Givental A., Tonita V., in Symplectic, Poisson, and Noncommutative Geometry, Math. Sci. Res. Inst. Publ., Vol. 62, Cambridge University Press, New York, 2014, 43–91]. Extending some results of Part VIII, we derive the invariance of a certain variety (the “big J-function”), constructed from the genus 0 descendant potential of permutation-equivariant quantum K-theory, under the action of certain finite difference operators in Novikov's variables, apply this to reconstructing the whole variety from one point on it, and give an explicit description of it in the case of the point target space.
Keywords: Gromov–Witten invariants, K-theory, adelic characterization.
@article{SIGMA_2020_16_a30,
     author = {Alexander Givental},
     title = {Permutation-Equivariant {Quantum} {K-Theory~X.} {Quantum} {Hirzebruch{\textendash}Riemann{\textendash}Roch} in {Genus~0}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a30/}
}
TY  - JOUR
AU  - Alexander Givental
TI  - Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch–Riemann–Roch in Genus 0
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a30/
LA  - en
ID  - SIGMA_2020_16_a30
ER  - 
%0 Journal Article
%A Alexander Givental
%T Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch–Riemann–Roch in Genus 0
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a30/
%G en
%F SIGMA_2020_16_a30
Alexander Givental. Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch–Riemann–Roch in Genus 0. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a30/

[1] Coates T., Riemann–Roch theorems in Gromov–Witten theory, Ph.D. Thesis, University of California, Berkeley, 2003 https://math.berkeley.edu/g̃iventh/coates_thesis.pdf | MR

[2] Coates T., Givental A., “Quantum cobordisms and formal group laws”, The Unity of Mathematics, In Honor of the Ninetieth Birthday of I.M. Gelfand, Progr. Math., 244, eds. P. Etingof, V.S. Retakh, I.M. Singer, Birkhäuser Boston, Boston, MA, 2006, 155–171 | DOI | MR | Zbl

[3] Givental A., “Symplectic geometry of Frobenius structures”, Frobenius Manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, 91–112, arXiv: math.AG/0305409 | DOI | MR

[4] Givental A., “Explicit reconstruction in quantum cohomology and K-theory”, Ann. Fac. Sci. Toulouse Math., 25 (2016), 419–432, arXiv: 1506.06431 | DOI | MR | Zbl

[5] Givental A., Permutation-equivariant quantum K-theory VII. General theory, arXiv: 1510.03076

[6] Givental A., Permutation-equivariant quantum K-theory VIII. Explicit reconstruction, arXiv: 1510.06116

[7] Givental A., Permutation-equivariant quantum K-theory IX. Quantum Hirzebruch–Riemann–Roch in all genera, arXiv: 1709.03180 | MR

[8] Givental A., Tonita V., “The Hirzebruch–Riemann–Roch theorem in true genus-0 quantum K-theory”, Symplectic, Poisson, and Noncommutative Geometry, Math. Sci. Res. Inst. Publ., 62, eds. T. Eguchi, Y. Eliashberg, Y. Mayeda, Cambridge University Press, New York, 2014, 43–91, arXiv: 1106.3136 | MR | Zbl

[9] Lee Y.-P., “Quantum K-theory. I. Foundations”, Duke Math. J., 121 (2004), 389–424, arXiv: math.AG/0105014 | DOI | MR | Zbl