@article{SIGMA_2020_16_a30,
author = {Alexander Givental},
title = {Permutation-Equivariant {Quantum} {K-Theory~X.} {Quantum} {Hirzebruch{\textendash}Riemann{\textendash}Roch} in {Genus~0}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a30/}
}
TY - JOUR AU - Alexander Givental TI - Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch–Riemann–Roch in Genus 0 JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a30/ LA - en ID - SIGMA_2020_16_a30 ER -
Alexander Givental. Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch–Riemann–Roch in Genus 0. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a30/
[1] Coates T., Riemann–Roch theorems in Gromov–Witten theory, Ph.D. Thesis, University of California, Berkeley, 2003 https://math.berkeley.edu/g̃iventh/coates_thesis.pdf | MR
[2] Coates T., Givental A., “Quantum cobordisms and formal group laws”, The Unity of Mathematics, In Honor of the Ninetieth Birthday of I.M. Gelfand, Progr. Math., 244, eds. P. Etingof, V.S. Retakh, I.M. Singer, Birkhäuser Boston, Boston, MA, 2006, 155–171 | DOI | MR | Zbl
[3] Givental A., “Symplectic geometry of Frobenius structures”, Frobenius Manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, 91–112, arXiv: math.AG/0305409 | DOI | MR
[4] Givental A., “Explicit reconstruction in quantum cohomology and K-theory”, Ann. Fac. Sci. Toulouse Math., 25 (2016), 419–432, arXiv: 1506.06431 | DOI | MR | Zbl
[5] Givental A., Permutation-equivariant quantum K-theory VII. General theory, arXiv: 1510.03076
[6] Givental A., Permutation-equivariant quantum K-theory VIII. Explicit reconstruction, arXiv: 1510.06116
[7] Givental A., Permutation-equivariant quantum K-theory IX. Quantum Hirzebruch–Riemann–Roch in all genera, arXiv: 1709.03180 | MR
[8] Givental A., Tonita V., “The Hirzebruch–Riemann–Roch theorem in true genus-0 quantum K-theory”, Symplectic, Poisson, and Noncommutative Geometry, Math. Sci. Res. Inst. Publ., 62, eds. T. Eguchi, Y. Eliashberg, Y. Mayeda, Cambridge University Press, New York, 2014, 43–91, arXiv: 1106.3136 | MR | Zbl
[9] Lee Y.-P., “Quantum K-theory. I. Foundations”, Duke Math. J., 121 (2004), 389–424, arXiv: math.AG/0105014 | DOI | MR | Zbl