NNSC-Cobordism of Bartnik Data in High Dimensions
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are $(n-1)$-dimensional Bartnik data $\big(\Sigma_i ^{n-1}, \gamma_i, H_i\big)$, $i=1,2$, NNSC-cobordant? (i.e., there is an $n$-dimensional compact Riemannian manifold $\big(\Omega^n, g\big)$ with scalar curvature $R(g)\geq 0$ and the boundary $\partial \Omega=\Sigma_{1} \cup \Sigma_{2}$ such that $\gamma_i$ is the metric on $\Sigma_i ^{n-1}$ induced by $g$, and $H_i$ is the mean curvature of $\Sigma_i$ in $\big(\Omega^n, g\big)$). If $\big(\mathbb{S}^{n-1},\gamma_{\rm std},0\big)$ is positive scalar curvature (PSC) cobordant to $\big(\Sigma_1 ^{n-1}, \gamma_1, H_1\big)$, where $\big(\mathbb{S}^{n-1}, \gamma_{\rm std}\big)$ denotes the standard round unit sphere then $\big(\Sigma_1 ^{n-1}, \gamma_1, H_1\big)$ admits an NNSC fill-in. Just as Gromov's conjecture is connected with positive mass theorem, our problems are connected with Penrose inequality, at least in the case of $n=3$. Our third problem is on $\Lambda\big(\Sigma^{n-1}, \gamma\big)$ defined below.
Keywords: scalar curvature
Mots-clés : NNSC-cobordism, quasi-local mass, fill-ins.
@article{SIGMA_2020_16_a29,
     author = {Xue Hu and Yuguang Shi},
     title = {NNSC-Cobordism of {Bartnik} {Data} in {High} {Dimensions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a29/}
}
TY  - JOUR
AU  - Xue Hu
AU  - Yuguang Shi
TI  - NNSC-Cobordism of Bartnik Data in High Dimensions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a29/
LA  - en
ID  - SIGMA_2020_16_a29
ER  - 
%0 Journal Article
%A Xue Hu
%A Yuguang Shi
%T NNSC-Cobordism of Bartnik Data in High Dimensions
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a29/
%G en
%F SIGMA_2020_16_a29
Xue Hu; Yuguang Shi. NNSC-Cobordism of Bartnik Data in High Dimensions. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a29/

[1] Bartnik R., “Quasi-spherical metrics and prescribed scalar curvature”, J. Differential Geom., 37 (1993), 31–71 | DOI | MR | Zbl

[2] Bo L., Shi Y., PSC-cobordism of Bartnik data in 3-dimensions, in preparation

[3] Bray H.L., “Proof of the Riemannian Penrose inequality using the positive mass theorem”, J. Differential Geom., 59 (2001), 177–267, arXiv: math.DG/9911173 | DOI | MR | Zbl

[4] Brown J.D., York Jr. J.W., “Quasilocal energy in general relativity”, Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., 132, Amer. Math. Soc., Providence, RI, 1992, 129–142 | DOI | MR

[5] Brown J.D., York Jr. J.W., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47 (1993), 1407–1419, arXiv: gr-qc/9209012 | DOI | MR

[6] Cabrera Pacheco A.J., Cederbaum C., McCormick S., Miao P., “Asymptotically flat extensions of CMC Bartnik data”, Classical Quantum Gravity, 34 (2017), 105001, 15 pp., arXiv: 1612.05241 | DOI | MR | Zbl

[7] Cabrera Pacheco A.J., Miao P., “Higher dimensional black hole initial data with prescribed boundary metric”, Math. Res. Lett., 25 (2018), 937–956, arXiv: 1505.01800 | DOI | MR | Zbl

[8] Gromov M., Scalar curvature of manifolds with boundaries: natural questions and artificial constructions, arXiv: 1811.04311

[9] Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612

[10] Gromov M., Lawson Jr. H.B., “The classification of simply connected manifolds of positive scalar curvature”, Ann. of Math., 111 (1980), 423–434 | DOI | MR | Zbl

[11] Hirsch S., Miao P., “A positive mass theorem for manifolds with boundary”, Pacific J. Math. (to appear) , arXiv: 1812.03961 | DOI | MR

[12] Huisken G., Ilmanen T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differential Geom., 59 (2001), 353–437 | DOI | MR | Zbl

[13] Jauregui J.L., “Fill-ins of nonnegative scalar curvature, static metrics, and quasi-local mass”, Pacific J. Math., 261 (2013), 417–444, arXiv: 1106.4339 | DOI | MR | Zbl

[14] Jauregui J.L., Miao P., Tam L.-F., “Extensions and fill-ins with non-negative scalar curvature”, Classical Quantum Gravity, 30 (2013), 195007, 12 pp., arXiv: 1304.0721 | DOI | MR | Zbl

[15] Lu S., Miao P., “Minimal hypersurfaces and boundary behavior of compact manifolds with nonnegative scalar curvature”, J. Differential Geom., 113 (2019), 519–566, arXiv: 1703.08164 | DOI | MR | Zbl

[16] Mantoulidis C., Miao P., “Total mean curvature, scalar curvature, and a variational analog of Brown–York mass”, Comm. Math. Phys., 352 (2017), 703–718, arXiv: 1604.00927 | DOI | MR | Zbl

[17] Mantoulidis C., Miao P., Tam L.-F., “Capacity, quasi-local mass, and singular fill-ins”, J. Reine Angew. Math. (to appear) , arXiv: 1805.05493 | DOI

[18] Mantoulidis C., Schoen R., “On the Bartnik mass of apparent horizons”, Classical Quantum Gravity, 32 (2015), 205002, 16 pp., arXiv: 1412.0382 | DOI | MR | Zbl

[19] McCormick S., Miao P., “On a Penrose-like inequality in dimensions less than eight”, Int. Math. Res. Not., 2019 (2019), 2069–2084, arXiv: 1701.04805 | DOI | MR | Zbl

[20] Miao P., Xie N., “On compact 3-manifolds with nonnegative scalar curvature with a CMC boundary component”, Trans. Amer. Math. Soc., 370 (2018), 5887–5906, arXiv: 1610.07513 | DOI | MR | Zbl

[21] Schoen R., Yau S.-T., “On the structure of manifolds with positive scalar curvature”, Manuscripta Math., 28 (1979), 159–183 | DOI | MR | Zbl

[22] Shi Y., Tam L.-F., “Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature”, J. Differential Geom., 62 (2002), 79–125, arXiv: math.DG/0301047 | DOI | MR | Zbl

[23] Shi Y., Tam L.-F., “Quasi-spherical metrics and applications”, Comm. Math. Phys., 250 (2004), 65–80 | DOI | MR | Zbl

[24] Shi Y., Tam L.-F., “Quasi-local mass and the existence of horizons”, Comm. Math. Phys., 274 (2007), 277–295, arXiv: math.DG/0511398 | DOI | MR | Zbl

[25] Shi Y., Tam L.-F., “Rigidity of compact manifolds and positivity of quasi-local mass”, Classical Quantum Gravity, 24 (2007), 2357–2366 | DOI | MR | Zbl

[26] Shi Y., Wang W., Wei G., Zhu J., On the fill-in of nonnegative scalar curvature metrics, arXiv: 1907.12173

[27] Shi Y., Wang W., Yu H., “On the rigidity of Riemannian–Penrose inequality for asymptotically flat 3-manifolds with corners”, Math. Z., 291 (2019), 569–589, arXiv: 1708.06373 | DOI | MR | Zbl

[28] Walsh M., Metrics of positive scalar curvature and generalised Morse functions, v. I, Mem. Amer. Math. Soc., 209, 2011, xviii+80 pp., arXiv: 0811.1245 | DOI | MR

[29] Walsh M., “Aspects of positive scalar curvature and topology I”, Irish Math. Soc. Bull., 80 (2017), 45–68 | MR | Zbl

[30] Walsh M., “Aspects of positive scalar curvature and topology II”, Irish Math. Soc. Bull., 81 (2018), 57–95 | MR | Zbl