Non-Abelian Hodge Theory and Related Topics
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a survey aimed on the introduction of non-Abelian Hodge theory that gives the correspondence between flat bundles and Higgs bundles. We will also introduce some topics arising from this theory, especially some recent developments on the study of the relevant moduli spaces together with some interesting open problems.
Keywords: non-Abelian Hodge theory, Hitchin section, oper, twistor space.
Mots-clés : $\lambda$-connection, moduli space, conformal limit, stratification
@article{SIGMA_2020_16_a28,
     author = {Pengfei Huang},
     title = {Non-Abelian {Hodge} {Theory} and {Related} {Topics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a28/}
}
TY  - JOUR
AU  - Pengfei Huang
TI  - Non-Abelian Hodge Theory and Related Topics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a28/
LA  - en
ID  - SIGMA_2020_16_a28
ER  - 
%0 Journal Article
%A Pengfei Huang
%T Non-Abelian Hodge Theory and Related Topics
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a28/
%G en
%F SIGMA_2020_16_a28
Pengfei Huang. Non-Abelian Hodge Theory and Related Topics. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a28/

[1] Abbes A., Gros M., Tsuji T., The $p$-adic Simpson correspondence, Annals of Mathematics Studies, 193, Princeton University Press, Princeton, NJ, 2016 | DOI | MR | Zbl

[2] Alessandrini D., “Higgs bundles and geometric structures on manifolds”, SIGMA, 15 (2019), 039, 32 pp., arXiv: 1809.07290 | DOI | MR | Zbl

[3] Amorós J., Burger M., Corlette K., Kotschick D., Toledo D., Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, 44, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR

[4] Aparicio-Arroyo M., Bradlow S., Collier B., García-Prada O., Gothen P.B., Oliveira A., “${\rm SO}(p,q)$-Higgs bundles and higher Teichmüller components”, Invent. Math., 218 (2019), 197–299, arXiv: 1802.08093 | DOI | MR | Zbl

[5] Beilinson A., Drinfeld V., Quantization of Hitchin's integrable system and Hecke eigensheaves, unpublished, , 1991 http://math.uchicago.edu/d̃rinfeld/langlands/hitchin/BD-hitchin.pdf | Zbl

[6] Biquard O., “Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse)”, Ann. Sci. École Norm. Sup. (4), 30 (1997), 41–96 | DOI | MR | Zbl

[7] Biquard O., Boalch P., “Wild non-abelian Hodge theory on curves”, Compos. Math., 140 (2004), 179–204, arXiv: math.DG/0111098 | DOI | MR | Zbl

[8] Biswas I., Gómez T.L., Hoffmann N., Logares M., “Torelli theorem for the Deligne–Hitchin moduli space”, Comm. Math. Phys., 290 (2009), 357–369, arXiv: 0901.0021 | DOI | MR | Zbl

[9] Biswas I., Heller S., Röser M., “Real holomorphic sections of the Deligne–Hitchin twistor space”, Comm. Math. Phys., 366 (2019), 1099–1133, arXiv: 1802.06587 | DOI | MR | Zbl

[10] Bradlow S.B., García-Prada O., Mundet i Riera I., “Relative Hitchin–Kobayashi correspondences for principal pairs”, Q. J. Math., 54 (2003), 171–208, arXiv: math.DG/0206003 | DOI | MR | Zbl

[11] Brantner L., Abelian and nonabelian Hodge theory, unpublished, , 2012 https://scholar.harvard.edu/files/brantner/files/hodge.pdf | Zbl

[12] Burger M., Iozzi A., Wienhard A., “Surface group representations with maximal Toledo invariant”, Ann. of Math., 172 (2010), 517–566, arXiv: math.DG/0605656 | DOI | MR | Zbl

[13] Burger M., Iozzi A., Wienhard A., “Higher Teichmüller spaces: from ${\rm SL}(2,{\mathbb R})$ to other Lie groups”, Handbook of Teichmüller Theory, v. IV, IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, 2014, 539–618, arXiv: 1004.2894 | DOI | MR | Zbl

[14] Collier B., “Studying deformations of Fuchsian representations with Higgs bundles”, SIGMA, 15 (2019), 010, 32 pp., arXiv: 1809.06786 | DOI | MR | Zbl

[15] Collier B., Wentworth R., “Conformal limits and the Białynicki-Birula stratification of the space of $\lambda$-connections”, Adv. Math., 350 (2019), 1193–1225, arXiv: 1808.01622 | DOI | MR | Zbl

[16] Corlette K., “Flat $G$-bundles with canonical metrics”, J. Differential Geom., 28 (1988), 361–382 | DOI | MR | Zbl

[17] Deligne P., Various letters to C. Simpson, unpublished

[18] Donagi R., Pantev T., “Geometric Langlands and non-abelian Hodge theory”, Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry, Surv. Differ. Geom., 13, Int. Press, Somerville, MA, 2009, 85–116 | DOI | MR | Zbl

[19] Donaldson S.K., “A new proof of a theorem of Narasimhan and Seshadri”, J. Differential Geom., 18 (1983), 269–277 | DOI | MR | Zbl

[20] Donaldson S.K., “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles”, Proc. London Math. Soc., 50 (1985), 1–26 | DOI | MR | Zbl

[21] Donaldson S.K., “Twisted harmonic maps and the self-duality equations”, Proc. London Math. Soc., 55 (1987), 127–131 | DOI | MR | Zbl

[22] Dumitrescu O., Fredrickson L., Kydonakis G., Mazzeo R., Mulase M., Neitzke A., “Opers versus nonabelian Hodge”, J. Differential Geom. (to appear) , arXiv: 1607.02172

[23] Faltings G., “A $p$-adic Simpson correspondence”, Adv. Math., 198 (2005), 847–862 | DOI | MR | Zbl

[24] Franc C., Rayan S., Nonabelian Hodge theory and vector-valued modular forms, arXiv: 1812.06180

[25] Fujiki A., “Hyper-Kähler structure on the moduli space of flat bundles”, Prospects in Complex Geometry (Katata and Kyoto, 1989), Lecture Notes in Math., 1468, Springer, Berlin, 1991, 1–83 | DOI | MR

[26] Gaiotto D., Opers and TBA, arXiv: 1403.6137

[27] García-Prada O., Higgs bundles and higher Teichmüller spaces, arXiv: 1901.09086

[28] García-Prada O., Gothen P.B., Mundet i Rierra I., The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations, arXiv: 0909.4487

[29] García-Raboso A., Rayan S., “Introduction to nonabelian Hodge theory: flat connections, Higgs bundles and complex variations of Hodge structure”, Calabi–Yau Varieties: Arithmetic, Geometry and Physics, Fields Inst. Monogr., 34, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, 131–171, arXiv: 1406.1693 | DOI | MR | Zbl

[30] Goldman W.M., “Topological components of spaces of representations”, Invent. Math., 93 (1988), 557–607 | DOI | MR | Zbl

[31] Gothen P.B., Zúñiga Rojas R.A., “Stratifications on the moduli space of Higgs bundles”, Port. Math., 74 (2017), 127–148, arXiv: 1511.03985 | DOI | MR | Zbl

[32] Greb D., Kebekus S., Peternell T., Taji B., “Nonabelian Hodge theory for klt spaces and descent theorems for vector bundles”, Compos. Math., 155 (2019), 289–323, arXiv: 1711.08159 | DOI | MR | Zbl

[33] Hausel T., Geometry of the moduli space of Higgs bundles, Ph.D. Thesis, University of Cambridge, 1998, arXiv: math.AG/0107040 | MR

[34] Hitchin N.J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl

[35] Hitchin N.J., “Lie groups and Teichmüller space”, Topology, 31 (1992), 449–473 | DOI | MR | Zbl

[36] Hitchin N.J., Karlhede A., Lindström U., Roček M., “Hyper-Kähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl

[37] Hu Z., Huang P., Flat $\lambda$-connections, Mochizuki correspondence and twistor spaces, arXiv: 1905.10765

[38] Kaledin D., Verbitsky M., “Non-Hermitian Yang–Mills connections”, Selecta Math. (N.S.), 4 (1998), 279–320, arXiv: alg-geom/9606019 | DOI | MR | Zbl

[39] Labourie F., “Anosov flows, surface groups and curves in projective space”, Invent. Math., 165 (2006), 51–114, arXiv: math.DG/0401230 | DOI | MR | Zbl

[40] Labourie F., Wentworth R., “Variations along the Fuchsian locus”, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 487–547, arXiv: 1506.01686 | DOI | MR | Zbl

[41] Li Q., “An introduction to Higgs bundles via harmonic maps”, SIGMA, 15 (2019), 035, 30 pp., arXiv: 1809.05747 | DOI | MR | Zbl

[42] Loray F., Saito M.-H., Simpson C., “Foliations on the moduli space of rank two connections on the projective line minus four points”, Geometric and differential Galois theories, Sémin. Congr., 27, Soc. Math. France, Paris, 2013, 117–170, arXiv: 1012.3612 | MR

[43] Migliorini L., “Recent results and conjectures on the non abelian Hodge theory of curves”, Boll. Unione Mat. Ital., 10 (2017), 467–485 | DOI | MR | Zbl

[44] Mochizuki T., Kobayashi–Hitchin correspondence for tame harmonic bundles and an application, Astérisque, 309, 2006, viii+117 pp., arXiv: math.DG/0411300 | MR | Zbl

[45] Mochizuki T., “Kobayashi–Hitchin correspondence for tame harmonic bundles. II”, Geom. Topol., 13 (2009), 359–455, arXiv: math.DG/0602266 | DOI | MR | Zbl

[46] Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque, 340, 2011, x+607 pp., arXiv: 0803.1344 | MR | Zbl

[47] Mochizuki T., Periodic monopoles and difference modules, arXiv: 1712.08981 | MR

[48] Mochizuki T., Doubly periodic monopoles and $q$-difference modules, arXiv: 1902.03551

[49] Mochizuki T., Triply periodic monopoles and difference modules on elliptic curves, arXiv: 1903.03264 | MR

[50] Mochizuki T., Yoshino M., “Some characterizations of Dirac type singularity of monopoles”, Comm. Math. Phys., 356 (2017), 613–625, arXiv: 1702.06268 | DOI | MR | Zbl

[51] Narasimhan M.S., Seshadri C.S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math., 82 (1965), 540–567 | DOI | MR | Zbl

[52] Ogus A., Vologodsky V., “Nonabelian Hodge theory in characteristic $p$”, Publ. Math. Inst. Hautes Études Sci., 2007, 1–138, arXiv: math.AG/0507476 | DOI | MR | Zbl

[53] Pauly C., Peón-Nieto A., “Very stable bundles and properness of the Hitchin map”, Geom. Dedicata, 198 (2019), 143–148, arXiv: 1710.10152 | DOI | MR | Zbl

[54] Rayan S., “Aspects of the topology and combinatorics of Higgs bundle moduli spaces”, SIGMA, 14 (2018), 129, 18 pp., arXiv: 1809.05732 | DOI | MR | Zbl

[55] Salamon S., “Quaternionic Kähler manifolds”, Invent. Math., 67 (1982), 143–171 | DOI | MR | Zbl

[56] Simpson C.T., “Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization”, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl

[57] Simpson C.T., “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3 (1990), 713–770 | DOI | MR | Zbl

[58] Simpson C.T., “Higgs bundles and local systems”, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 5–95 | DOI | MR | Zbl

[59] Simpson C.T., “Moduli of representations of the fundamental group of a smooth projective variety. I”, Inst. Hautes Études Sci. Publ. Math., 79 (1994), 47–129 | DOI | MR | Zbl

[60] Simpson C.T., “Moduli of representations of the fundamental group of a smooth projective variety. II”, Inst. Hautes Études Sci. Publ. Math., 80 (1994), 5–79 | DOI | MR

[61] Simpson C.T., “The Hodge filtration on nonabelian cohomology”, Algebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1997, 217–281, arXiv: alg-geom/9604005 | DOI | MR | Zbl

[62] Simpson C.T., “A weight two phenomenon for the moduli of rank one local systems on open varieties”, From Hodge theory to Integrability and TQFT $tt^*$-Geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 175–214, arXiv: 0710.2800 | DOI | MR | Zbl

[63] Simpson C.T., “Iterated destabilizing modifications for vector bundles with connection”, Vector Bundles and Complex Geometry, Contemp. Math., 522, Amer. Math. Soc., Providence, RI, 2010, 183–206, arXiv: 0812.3472 | DOI | MR | Zbl

[64] Uhlenbeck K., Yau S.-T., “On the existence of Hermitian–Yang–Mills connections in stable vector bundles”, Comm. Pure Appl. Math., 39 (1986), S257–S293 | DOI | MR | Zbl

[65] Wienhard A., “An invitation to higher Teichmüller theory”, Proceedings of the International Congress of Mathematicians, Invited Lectures (Rio de Janeiro, 2018), v. II, World Sci. Publ., Hackensack, NJ, 2018, 1013–1039, arXiv: 1803.06870 | DOI | MR