@article{SIGMA_2020_16_a27,
author = {Yuma Mizuno},
title = {Exponents {Associated} with $Y${-Systems} and their {Relationship} with $q${-Series}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a27/}
}
Yuma Mizuno. Exponents Associated with $Y$-Systems and their Relationship with $q$-Series. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a27/
[1] Bartlett N., Warnaar S.O., “Hall–Littlewood polynomials and characters of affine Lie algebras”, Adv. Math., 285 (2015), 1066–1105, arXiv: 1304.1602 | DOI | MR | Zbl
[2] Calegari F., Garoufalidis S., Zagier D., Bloch groups, algebraic $K$-theory, units, and Nahm's conjecture, arXiv: 1712.04887
[3] Flohr M., Grabow C., Koehn M., “Fermionic expressions for the characters of $c_{p,1}$ logarithmic conformal field theories”, Nuclear Phys. B, 768 (2007), 263–276, arXiv: hep-th/0611241 | DOI | MR | Zbl
[4] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[5] Fomin S., Zelevinsky A., “$Y$-systems and generalized associahedra”, Ann. of Math., 158 (2003), 977–1018, arXiv: hep-th/0111053 | DOI | MR | Zbl
[6] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl
[7] Galashin P., Pylyavskyy P., “The classification of Zamolodchikov periodic quivers”, Amer. J. Math., 141 (2019), 447–484, arXiv: 1603.03942 | DOI | MR | Zbl
[8] Garoufalidis S., Lê T.T.Q., “Nahm sums, stability and the colored Jones polynomial”, Res. Math. Sci., 2 (2015), 1, 55 pp., arXiv: 1112.3905 | DOI | MR | Zbl
[9] Georgiev G., Combinatorial constructions of modules for infinite-dimensional Lie algebras, II Parafermionic space, arXiv: q-alg/9504024 | MR
[10] Gleitz A.-S., “On the KNS conjecture in type $E$”, Ann. Comb., 18 (2014), 617–643, arXiv: 1307.2738 | DOI | MR | Zbl
[11] Hatayama G., Kuniba A., Okado M., Takagi T., Tsuboi Z., “Paths, Crystals and Fermionic Formulae”, MathPhys odyssey (2001), Prog. Math. Phys., 23, Birkhäuser Boston, Boston, MA, 2002, 205–272, arXiv: math.QA/0102113 | DOI | MR | Zbl
[12] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., “Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: type $B_r$”, Publ. Res. Inst. Math. Sci., 49 (2013), 1–42, arXiv: 1001.1880 | DOI | MR | Zbl
[13] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., “Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras II: types $C_r$, $F_4$, and $G_2$”, Publ. Res. Inst. Math. Sci., 49 (2013), 43–85, arXiv: 1001.1881 | DOI | MR | Zbl
[14] Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[15] Kac V.G., Peterson D.H., “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. Math., 53 (1984), 125–264 | DOI | MR | Zbl
[16] Kac V.G., Wakimoto M., “Modular and conformal invariance constraints in representation theory of affine algebras”, Adv. Math., 70 (1988), 156–236 | DOI | MR | Zbl
[17] Kato A., Terashima Y., “Quiver mutation loops and partition $q$-series”, Comm. Math. Phys., 336 (2015), 811–830, arXiv: 1403.6569 | DOI | MR | Zbl
[18] Keller B., “The periodicity conjecture for pairs of Dynkin diagrams”, Ann. of Math., 177 (2013), 111–170, arXiv: 1001.1531 | DOI | MR | Zbl
[19] Kirillov A.N., “Identities for the Rogers dilogarithmic function connected with simple Lie algebras”, J. Soviet Math., 47 (1989), 2450–2459 | DOI | MR
[20] Kuniba A., “Thermodynamics of the $U_q\big(X^{(1)}_r\big)$ Bethe ansatz system with $q$ a root of unity”, Nuclear Phys. B, 389 (1993), 209–244 | DOI | MR
[21] Kuniba A., Nakanishi T., “Spectra in conformal field theories from the Rogers dilogarithm”, Modern Phys. Lett. A, 7 (1992), 3487–3494, arXiv: hep-th/9206034 | DOI | MR | Zbl
[22] Kuniba A., Nakanishi T., Suzuki J., “Characters in conformal field theories from thermodynamic Bethe ansatz”, Modern Phys. Lett. A, 8 (1993), 1649–1659, arXiv: hep-th/9301018 | DOI | MR | Zbl
[23] Kuniba A., Nakanishi T., Suzuki J., “$T$-systems and $Y$-systems in integrable systems”, J. Phys. A: Math. Theor., 44 (2011), 103001, 146 pp., arXiv: 1010.1344 | DOI | MR | Zbl
[24] Lee C.-H., “Nahm's conjecture and $Y$-systems”, Commun. Number Theory Phys., 7 (2013), 1–14, arXiv: 1109.3667 | DOI | MR | Zbl
[25] Lee C.-H., “A proof of the KNS conjecture: $D_r$ case”, J. Phys. A: Math. Theor., 46 (2013), 165201, 12 pp., arXiv: 1210.1669 | DOI | MR | Zbl
[26] Lee C.-H., “Positivity and periodicity of $Q$-systems in the WZW fusion ring”, Adv. Math., 311 (2017), 532–568, arXiv: 1302.1467 | DOI | MR | Zbl
[27] Mizuno Y., “Jacobian matrices of Y-seed mutations”, Adv. in Appl. Math., 115 (2020), 101987, 36 pp., arXiv: 1805.00044 | DOI | MR | Zbl
[28] Nahm W., Recknagel A., Terhoeven M., “Dilogarithm identities in conformal field theory”, Modern Phys. Lett. A, 8 (1993), 1835–1847, arXiv: hep-th/9211034 | DOI | MR | Zbl
[29] Nakanishi T., “Dilogarithm identities for conformal field theories and cluster algebras: simply laced case”, Nagoya Math. J., 202 (2011), 23–43, arXiv: 0909.5480 | DOI | MR | Zbl
[30] Nakanishi T., “Periodicities in cluster algebras and dilogarithm identities”, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 407–443, arXiv: 1006.0632 | DOI | MR | Zbl
[31] Stembridge J.R., “Admissible $W$-graphs and commuting Cartan matrices”, Adv. in Appl. Math., 44 (2010), 203–224 | DOI | MR | Zbl
[32] Stoyanovsky A.V., “Lie algebra deformations and character formulas”, Funct. Anal. Appl., 32 (1998), 66–68 | DOI | MR | Zbl
[33] Stoyanovsky A.V., Feigin B.L., “Functional models for representations of current algebras and semi-infinite Schubert cells”, Funct. Anal. Appl., 28 (1994), 55–72 | DOI | MR | Zbl
[34] Terashima Y., Yamazaki M., “$\mathcal{N}=2$ theories from cluster algebras”, Progr. Theor. Exper. Phys., 2014, 2012, 023B01, 37 pp., arXiv: 1301.5902 | DOI
[35] Terhoeven M., “Dilogarithm identities, fusion rules and structure constants of CFTs”, Modern Phys. Lett. A, 9 (1994), 133–141, arXiv: hep-th/9307056 | DOI | MR | Zbl
[36] Vlasenko M., Zwegers S., “Nahm's conjecture: asymptotic computations and counterexamples”, Commun. Number Theory Phys., 5 (2011), 617–642, arXiv: 1104.4008 | DOI | MR | Zbl
[37] Warnaar S.O., “Proof of the Flohr–Grabow–Koehn conjectures for characters of logarithmic conformal field theory”, J. Phys. A: Math. Theor., 40 (2007), 12243–12254, arXiv: 0704.3118 | DOI | MR | Zbl
[38] Warnaar S.O., Zudilin W., “Dedekind's $\eta$-function and Rogers–Ramanujan identities”, Bull. Lond. Math. Soc., 44 (2012), 1–11, arXiv: 1001.1571 | DOI | MR | Zbl
[39] Zagier D., “The dilogarithm function”, Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3–65 | DOI | MR | Zbl