@article{SIGMA_2020_16_a26,
author = {Dylan Helliwell},
title = {Bach {Flow} on {Homogeneous} {Products}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a26/}
}
Dylan Helliwell. Bach Flow on Homogeneous Products. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a26/
[1] Bahuaud E., Helliwell D., “Short-time existence for some higher-order geometric flows”, Comm. Partial Differential Equations, 36 (2011), 2189–2207, arXiv: 1010.4287 | DOI | MR | Zbl
[2] Bahuaud E., Helliwell D., “Uniqueness for some higher-order geometric flows”, Bull. Lond. Math. Soc., 47 (2015), 980–995, arXiv: 1407.4406 | DOI | MR | Zbl
[3] Bour V., Fourth order curvature flows and geometric applications, arXiv: 1012.0342
[4] Cao X., Ni Y., Saloff-Coste L., “Cross curvature flow on locally homogenous three-manifolds. I”, Pacific J. Math., 236 (2008), 263–281, arXiv: 0708.1922 | DOI | MR | Zbl
[5] Cao X., Saloff-Coste L., “Backward Ricci flow on locally homogeneous 3-manifolds”, Comm. Anal. Geom., 17 (2009), 305–325, arXiv: 0810.3352 | DOI | MR | Zbl
[6] Cao X., Saloff-Coste L., “Cross curvature flow on locally homogeneous three-manifolds (II)”, Asian J. Math., 13 (2009), 421–458, arXiv: 0805.3380 | DOI | MR | Zbl
[7] Das S., Kar S., “Bach flows of product manifolds”, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250039, 18 pp., arXiv: 1012.4244 | DOI | MR | Zbl
[8] Gimre K., Guenther C., Isenberg J., “Second-order renormalization group flow of three-dimensional homogeneous geometries”, Comm. Anal. Geom., 21 (2013), 435–467, arXiv: 1205.6507 | DOI | MR | Zbl
[9] Glickenstein D., Payne T.L., “Ricci flow on three-dimensional, unimodular metric Lie algebras”, Comm. Anal. Geom., 18 (2010), 927–961, arXiv: 0909.0938 | DOI | MR | Zbl
[10] Ho P.T., “Bach flow”, J. Geom. Phys., 133 (2018), 1–9 | DOI | MR
[11] Isenberg J., Jackson M., “Ricci flow of locally homogeneous geometries on closed manifolds”, J. Differential Geom., 35 (1992), 723–741 | DOI | MR | Zbl
[12] Isenberg J., Jackson M., Lu P., “Ricci flow on locally homogeneous closed 4-manifolds”, Comm. Anal. Geom., 14 (2006), 345–386, arXiv: math.DG/0502170 | DOI | MR | Zbl
[13] Kişisel A.U.O., Sarı oğlu O., Tekin B., “Cotton flow”, Classical Quantum Gravity, 25 (2008), 165019, 15 pp., arXiv: 0803.1603 | DOI | MR
[14] Knopf D., McLeod K., “Quasi-convergence of model geometries under the Ricci flow”, Comm. Anal. Geom., 9 (2001), 879–919 | DOI | MR | Zbl
[15] Lee J.M., Riemannian manifolds. An introduction to curvature, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997 | DOI | MR | Zbl
[16] Lee J.M., Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, 2nd ed., Springer, New York, 2013 | DOI | MR | Zbl
[17] Lopez C., “Ambient obstruction flow”, Trans. Amer. Math. Soc., 370 (2018), 4111–4145, arXiv: 1506.01979 | DOI | MR | Zbl
[18] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl
[19] Ryan Jr. M.P., Shepley L.C., Homogeneous relativistic cosmologies, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1975 | MR
[20] Streets J.D., “The gradient flow of $\int_M|{\rm Rm}|^2$”, J. Geom. Anal., 18 (2008), 249–271 | DOI | MR | Zbl