Virtual Classes for the Working Mathematician
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This note is intended to be a friendly introduction to virtual classes. We review virtual classes and we give a number of properties and applications. We also include a new virtual push-forward theorem and many computations of virtual classes in simple examples.
Keywords: intersection theory, virtual classes, Gromov–Witten theory
Mots-clés : moduli spaces.
@article{SIGMA_2020_16_a25,
     author = {Luca Battistella and Francesca Carocci and Cristina Manolache},
     title = {Virtual {Classes} for the {Working} {Mathematician}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a25/}
}
TY  - JOUR
AU  - Luca Battistella
AU  - Francesca Carocci
AU  - Cristina Manolache
TI  - Virtual Classes for the Working Mathematician
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a25/
LA  - en
ID  - SIGMA_2020_16_a25
ER  - 
%0 Journal Article
%A Luca Battistella
%A Francesca Carocci
%A Cristina Manolache
%T Virtual Classes for the Working Mathematician
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a25/
%G en
%F SIGMA_2020_16_a25
Luca Battistella; Francesca Carocci; Cristina Manolache. Virtual Classes for the Working Mathematician. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a25/

[1] Aluffi P., “Computing characteristic classes of projective schemes”, J. Symbolic Comput., 35 (2003), 3–19, arXiv: math.AG/0204230 | DOI | MR | Zbl

[2] Aluffi P., “Segre classes as integrals over polytopes”, J. Eur. Math. Soc., 18 (2016), 2849–2863, arXiv: 1307.0830 | DOI | MR | Zbl

[3] Aluffi P., Brasselet J.-P., “Interpolation of characteristic classes of singular hypersurfaces”, Adv. Math., 180 (2003), 692–704, arXiv: math.AG/0107185 | DOI | MR | Zbl

[4] Battistella L., Carocci F., Manolache C., Reduced invariants from cuspidal maps, arXiv: 1801.07739

[5] Behrend K., “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127 (1997), 601–617, arXiv: alg-geom/9601011 | DOI | MR | Zbl

[6] Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010 | DOI | MR | Zbl

[7] Chang H.-L., Li J., “Semi-perfect obstruction theory and Donaldson–Thomas invariants of derived objects”, Comm. Anal. Geom., 19 (2011), 807–830, arXiv: 1105.3261 | DOI | MR | Zbl

[8] Chang H.-L., Li J., “An algebraic proof of the hyperplane property of the genus one GW-invariants of quintics”, J. Differential Geom., 100 (2015), 251–299, arXiv: 1206.5390 | DOI | MR | Zbl

[9] Ciocan-Fontanine I., Kim B., “Moduli stacks of stable toric quasimaps”, Adv. Math., 225 (2010), 3022–3051, arXiv: 0908.4446 | DOI | MR | Zbl

[10] Ciocan-Fontanine I., Kim B., Maulik D., “Stable quasimaps to GIT quotients”, J. Geom. Phys., 75 (2014), 17–47, arXiv: 1106.3724 | DOI | MR | Zbl

[11] Coates T., Gholampour A., Iritani H., Jiang Y., Johnson P., Manolache C., “The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces”, Math. Res. Lett., 19 (2012), 997–1005, arXiv: 1202.2754 | DOI | MR | Zbl

[12] Coates T., Manolache C., A splitting of the virtual class for genus one stable maps, arXiv: 1809.04162

[13] Eklund D., Jost C., Peterson C., “A method to compute Segre classes of subschemes of projective space”, J. Algebra Appl., 12 (2013), 1250142, 15 pp., arXiv: 1109.5895 | DOI | MR | Zbl

[14] Fulton W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[15] Fulton W., Pandharipande R., “Notes on stable maps and quantum cohomology”, Algebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1997, 45–96, arXiv: alg-geom/9608011 | DOI | MR | Zbl

[16] Graber T., Pandharipande R., “Localization of virtual classes”, Invent. Math., 135 (1999), 487–518, arXiv: alg-geom/9708001 | DOI | MR | Zbl

[17] Helmer M., “Algorithms to compute the topological Euler characteristic, Chern–Schwartz–MacPherson class and Segre class of projective varieties”, J. Symbolic Comput., 73 (2016), 120–138, arXiv: 1402.2930 | DOI | MR | Zbl

[18] Helmer M., “A direct algorithm to compute the topological Euler characteristic and Chern–Schwartz–MacPherson class of projective complete intersection varieties”, Theoret. Comput. Sci., 681 (2017), 54–74, arXiv: 1410.4113 | DOI | MR | Zbl

[19] Hu Y., Li J., “Genus-one stable maps, local equations, and Vakil–Zinger's desingularization”, Math. Ann., 348 (2010), 929–963, arXiv: 0812.4286 | DOI | MR | Zbl

[20] Kim B., Kresch A., Pantev T., “Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee”, J. Pure Appl. Algebra, 179 (2003), 127–136 | DOI | MR | Zbl

[21] Kontsevich M., “Enumeration of rational curves via torus actions”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, 335–368, arXiv: hep-th/9405035 | DOI | MR | Zbl

[22] Kresch A., “Cycle groups for Artin stacks”, Invent. Math., 138 (1999), 495–536, arXiv: math.AG/9810166 | DOI | MR | Zbl

[23] Li J., Tian G., “Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties”, J. Amer. Math. Soc., 11 (1998), 119–174, arXiv: alg-geom/9602007 | DOI | MR | Zbl

[24] Li J., Zinger A., “On the genus-one Gromov–Witten invariants of complete intersections”, J. Differential Geom., 82 (2009), 641–690, arXiv: math.AG/0507104 | DOI | MR | Zbl

[25] Manolache C., “Virtual pull-backs”, J. Algebraic Geom., 21 (2012), 201–245, arXiv: 0805.2065 | DOI | MR | Zbl

[26] Manolache C., “Virtual push-forwards”, Geom. Topol., 16 (2012), 2003–2036, arXiv: 1010.2704 | DOI | MR | Zbl

[27] Moe T.K., Qviller N., “Segre classes on smooth projective toric varieties,”, Math. Z., 275 (2013), 529–548, arXiv: 1204.4884 | DOI | MR | Zbl

[28] Pandharipande R., Thomas R.P., “Curve counting via stable pairs in the derived category”, Invent. Math., 178 (2009), 407–447, arXiv: 0707.2348 | DOI | MR | Zbl

[29] Pandharipande R., Thomas R.P., “13/2 ways of counting curves”, Moduli Spaces, London Math. Soc. Lecture Note Ser., 411, Cambridge University Press, Cambridge, 2014, 282–333, arXiv: 1111.1552 | DOI | MR | Zbl

[30] Siebert B., “Virtual fundamental classes, global normal cones and Fulton's canonical classes”, Frobenius Manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, 341–358, arXiv: math.AG/0509076 | DOI | MR

[31] Thomas R.P., “A holomorphic Casson invariant for Calabi–Yau 3-folds, and bundles on $K3$ fibrations”, J. Differential Geom., 54 (2000), 367–438, arXiv: math.AG/9806111 | DOI | MR | Zbl

[32] Vakil R., “The enumerative geometry of rational and elliptic curves in projective space”, J. Reine Angew. Math., 529 (2000), 101–153, arXiv: alg-geom/9709007 | DOI | MR | Zbl

[33] Vakil R., Zinger A., “A desingularization of the main component of the moduli space of genus-one stable maps into ${\mathbb P}^n$”, Geom. Topol., 12 (2008), 1–95, arXiv: math.AG/0603353 | DOI | MR | Zbl

[34] Vistoli A., “Intersection theory on algebraic stacks and on their moduli spaces”, Invent. Math., 97 (1989), 613–670 | DOI | MR | Zbl

[35] Zinger A., “Standard versus reduced genus-one Gromov–Witten invariants”, Geom. Topol., 12 (2008), 1203–1241, arXiv: 0706.0715 | DOI | MR | Zbl

[36] Zinger A., “Reduced genus-one Gromov–Witten invariants”, J. Differential Geom., 83 (2009), 407–460, arXiv: math.AG/0507103 | DOI | MR | Zbl

[37] Zinger A., “The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces”, J. Amer. Math. Soc., 22 (2009), 691–737, arXiv: 0705.2397 | DOI | MR | Zbl