Horospherical Cauchy Transform on Some Pseudo-Hyperbolic Spaces
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the horospherical transform and its inversion in 3 examples of hyperboloids. We want to illustrate via these examples the fact that the horospherical inversion formulas can be directly extracted from the classical Radon inversion formula. In a more broad context, this possibility reflects the fact that the harmonic analysis on symmetric spaces (Riemannian as well as pseudo-Riemannian ones) is equivalent (homologous), up to the Abelian Fourier transform, to the similar problem in the flat model. On the technical level it is important that we work not with the usual horospherical transform, but with its Cauchy modification.
Keywords: pseudo-hyperbolic spaces, hyperboloids, horospheres, horospherical transform, horospherical Cauchy transform.
@article{SIGMA_2020_16_a23,
     author = {Simon Gindikin},
     title = {Horospherical {Cauchy} {Transform} on {Some} {Pseudo-Hyperbolic} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a23/}
}
TY  - JOUR
AU  - Simon Gindikin
TI  - Horospherical Cauchy Transform on Some Pseudo-Hyperbolic Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a23/
LA  - en
ID  - SIGMA_2020_16_a23
ER  - 
%0 Journal Article
%A Simon Gindikin
%T Horospherical Cauchy Transform on Some Pseudo-Hyperbolic Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a23/
%G en
%F SIGMA_2020_16_a23
Simon Gindikin. Horospherical Cauchy Transform on Some Pseudo-Hyperbolic Spaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a23/

[1] Gelfand I.M., Gindikin S.G., Graev M.I., Selected topics in integral geometry, Translations of Mathematical Monographs, 220, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[2] Gindikin S., “Real integral geometry and complex analysis”, Integral Geometry, Radon Transforms and Complex Analysis (Venice, 1996), Lecture Notes in Math., 1684, Springer, Berlin, 1998, 70–98 | DOI | MR | Zbl

[3] Gindikin S., “Integral geometry on ${\rm SL}(2;{\mathbb R})$”, Math. Res. Lett., 7 (2000), 417–432 | DOI | MR | Zbl

[4] Gindikin S., “Complex horospherical transform on real sphere”, Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005, 227–232, arXiv: math.RT/0501023 | DOI | MR | Zbl

[5] Gindikin S., “Harmonic analysis on symmetric Stein manifolds from the point of view of complex analysis”, Jpn. J. Math., 1 (2006), 87–105 | DOI | MR | Zbl