@article{SIGMA_2020_16_a21,
author = {Pavle V. M. Blagojevi\'c and Michael Harrison and S. Tabachnikov and G\"unter M. Ziegler},
title = {Counting {Periodic} {Trajectories} of {Finsler} {Billiards}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a21/}
}
TY - JOUR AU - Pavle V. M. Blagojević AU - Michael Harrison AU - S. Tabachnikov AU - Günter M. Ziegler TI - Counting Periodic Trajectories of Finsler Billiards JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a21/ LA - en ID - SIGMA_2020_16_a21 ER -
%0 Journal Article %A Pavle V. M. Blagojević %A Michael Harrison %A S. Tabachnikov %A Günter M. Ziegler %T Counting Periodic Trajectories of Finsler Billiards %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a21/ %G en %F SIGMA_2020_16_a21
Pavle V. M. Blagojević; Michael Harrison; S. Tabachnikov; Günter M. Ziegler. Counting Periodic Trajectories of Finsler Billiards. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a21/
[1] Adem A., Milgram R. J., Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften, 309, 2nd ed., Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl
[2] Akopyan A. V., Zaslavsky A. A., Geometry of conics, Mathematical World, 26, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[3] Álvarez J. C., Durán C., An introduction to Finsler geometry, Notas de la Escuela Venezolana de Matématicas, 1998
[4] Artstein-Avidan S., Karasev R., Ostrover Y., “From symplectic measurements to the Mahler conjecture”, Duke Math. J., 163 (2014), 2003–2022, arXiv: 1303.4197 | DOI | MR | Zbl
[5] Artstein-Avidan S., Ostrover Y., “Bounds for Minkowski billiard trajectories in convex bodies”, Int. Math. Res. Not., 2014 (2014), 165–193, arXiv: 1111.2353 | DOI | MR | Zbl
[6] Babenko I. K., “Periodic trajectories of three-dimensional Birkhoff billiards”, Math. USSR Sb., 71 (1992), 1–13 | DOI | MR | Zbl
[7] Bangert V., “On the existence of closed geodesics on two-spheres”, Internat. J. Math., 4 (1993), 1–10 | DOI | MR | Zbl
[8] Bao D., Chern S.-S., Shen Z., An introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000 | DOI | MR | Zbl
[9] Berglund N., Kunz H., “Integrability and ergodicity of classical billiards in a magnetic field”, J. Statist. Phys., 83 (1996), 81–126, arXiv: chao-dyn/9501009 | DOI | MR | Zbl
[10] Bialy M., “On totally integrable magnetic billiards on constant curvature surface”, Electron. Res. Announc. Math. Sci., 19 (2012), 112–119, arXiv: 1208.2455 | DOI | MR | Zbl
[11] Birkhoff G. D., “On the periodic motions of dynamical systems”, Acta Math., 50 (1927), 359–379 | DOI | MR | Zbl
[12] Blagojević P.V.M., Lück W., Ziegler G. M., “Equivariant topology of configuration spaces”, J. Topol., 8 (2015), 414–456, arXiv: 1207.2852 | DOI | MR | Zbl
[13] Busemann H., “Problem IV: Desarguesian spaces”, Mathematical Developments Arising from Hilbert Problems (Northern Illinois Univ., De Kalb, Ill., 1974), Proc. Sympos. Pure Math., 1976, 131–141 | DOI | MR | Zbl
[14] Chern S.-S., “Finsler geometry is just Riemannian geometry without the quadratic restriction”, Notices Amer. Math. Soc., 43 (1996), 959–963 | MR | Zbl
[15] Chernov N., Markarian R., Chaotic billiards, Mathematical Surveys and Monographs, 127, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl
[16] Cohen F. R., Lada T. J., May J. P., The homology of iterated loop spaces, Lecture Notes in Math., 533, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[17] Cornea O., Lupton G., Oprea J., Tanré D., Lusternik–Schnirelmann category, Mathematical Surveys and Monographs, 103, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[18] Fadell E., Husseini S., “Category weight and Steenrod operations”, Bol. Soc. Mat. Mexicana, 37 (1992), 151–161 | MR | Zbl
[19] Fadell E., Husseini S., Geometry and topology of configuration spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl
[20] Farber M., “Topology of billiard problems. II”, Duke Math. J., 115 (2002), 587–621, arXiv: math.AT/0006085 | DOI | MR | Zbl
[21] Farber M., Tabachnikov S., “Periodic trajectories in 3-dimensional convex billiards”, Manuscripta Math., 108 (2002), 431–437, arXiv: math.DG/0106049 | DOI | MR | Zbl
[22] Farber M., Tabachnikov S., “Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards”, Topology, 41 (2002), 553–589, arXiv: math.DG/9911226 | DOI | MR | Zbl
[23] Fenchel W., “On the differential geometry of closed space curves”, Bull. Amer. Math. Soc., 57 (1951), 44–54 | DOI | MR | Zbl
[24] Fomenko A., Fuchs D., Homotopical topology, Graduate Texts in Mathematics, 273, 2nd ed., Springer, Cham, 2016 | DOI | MR | Zbl
[25] Franks J., “Geodesics on $S^2$ and periodic points of annulus homeomorphisms”, Invent. Math., 108 (1992), 403–418 | DOI | MR | Zbl
[26] Gutkin B., “Hyperbolic magnetic billiards on surfaces of constant curvature”, Comm. Math. Phys., 217 (2001), 33–53, arXiv: nlin.CD/0003033 | DOI | MR | Zbl
[27] Gutkin E., Tabachnikov S., “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40 (2002), 277–301 | DOI | MR | Zbl
[28] Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[29] Karasev R. N., “Periodic billiard trajectories in smooth convex bodies”, Geom. Funct. Anal., 19 (2009), 423–428, arXiv: 0905.1761 | DOI | MR | Zbl
[30] Katok A. B., “Ergodic perturbations of degenerate integrable Hamiltonian systems”, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 539–576 | MR
[31] Kozlov V. V., Treshchev D. V., Billiards. A genetic introduction to the dynamics of systems with impacts, Translations of Mathematical Monographs, 89, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl
[32] Laudenbach F., “A Morse complex on manifolds with boundary”, Geom. Dedicata, 153 (2011), 47–57, arXiv: 1003.5077 | DOI | MR | Zbl
[33] Mazzucchelli M., “On the multiplicity of non-iterated periodic billiard trajectories”, Pacific J. Math., 252 (2011), 181–205, arXiv: 1012.5593 | DOI | MR | Zbl
[34] McCleary J., A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics, 58, 2nd ed., Cambridge University Press, Cambridge, 2001 | MR | Zbl
[35] Robnik M., Berry M. V., “Classical billiards in magnetic fields”, J. Phys. A: Math. Gen., 18 (1985), 1361–1378 | DOI | MR | Zbl
[36] Roth F., “On the category of Euclidean configuration spaces and associated fibrations”, Groups, Homotopy and Configuration Spaces, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry, 2008, 447–461, arXiv: 0904.1013 | DOI | MR | Zbl
[37] Rudyak Yu.B., “On category weight and its applications”, Topology, 38 (1999), 37–55 | DOI | MR | Zbl
[38] Shen Y.-B., Shen Z., Introduction to modern Finsler geometry, World Scientific Publishing Co., Singapore, 2016 | DOI | MR | Zbl
[39] Strom J. A., Category weight and essential category weight, Ph.D. Thesis, The University of Wisconsin, USA, 1997 | MR | Zbl
[40] Tabachnikov S., Billiards, Panor. Synth., 1, 1995, vi+142 pp. | MR | Zbl
[41] Tabachnikov S., “Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert's fourth problem”, Modern Dynamical Systems and Applications, Cambridge University Press, Cambridge, 2004, 233–250, arXiv: math.DG/0302288 | MR | Zbl
[42] Tabachnikov S., Geometry and billiards, Student Mathematical Library, 30, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl
[43] Tasnádi T., “The behavior of nearby trajectories in magnetic billiards”, J. Math. Phys., 37 (1996), 5577–5598 | DOI | MR | Zbl
[44] Zharnitsky V., “Invariant tori in Hamiltonian systems with impacts”, Comm. Math. Phys., 211 (2000), 289–302 | DOI | MR | Zbl