@article{SIGMA_2020_16_a20,
author = {Shouhei Honda},
title = {Collapsed {Ricci} {Limit} {Spaces} as {Non-Collapsed} ${\rm RCD}$ {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a20/}
}
Shouhei Honda. Collapsed Ricci Limit Spaces as Non-Collapsed ${\rm RCD}$ Spaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a20/
[1] Ambrosio L., “Calculus, heat flow and curvature-dimension bounds in metric measure spaces”, Proceedings of the International Congress of Mathematicians, Plenary lectures (Rio de Janeiro, 2018), v. I, World Sci. Publ., Hackensack, NJ, 2018, 301–340 | MR
[2] Ambrosio L., Bruè E., Trevisan D., “Lusin-type approximation of Sobolev by Lipschitz functions”, Gaussian and ${\rm RCD}(K,\infty)$ spaces, Adv. Math., 339, 2018, 426–452, arXiv: 1712.06315 | DOI | MR | Zbl
[3] Ambrosio L., Gigli N., Mondino A., Rajala T., “Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure”, Trans. Amer. Math. Soc., 367 (2015), 4661–4701, arXiv: 1207.4924 | DOI | MR | Zbl
[4] Ambrosio L., Gigli N., Savaré G., “Metric measure spaces with Riemannian Ricci curvature bounded from below”, Duke Math. J., 163 (2014), 1405–1490, arXiv: 1109.0222 | DOI | MR | Zbl
[5] Ambrosio L., Honda S., “New stability results for sequences of metric measure spaces with uniform Ricci bounds from below”, Measure Theory in Non-Smooth Spaces, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017, 1–51, arXiv: 1605.07908 | DOI | MR
[6] Ambrosio L., Honda S., “Local spectral convergence in ${\rm RCD}^*(K,N)$ spaces”, Nonlinear Anal., 177 (2018), 1–23, arXiv: 1703.04939 | DOI | MR | Zbl
[7] Ambrosio L., Honda S., Portegies J. W., Tewodrose D., Embedding of ${\rm RCD}^*(K, N)$-spaces in $L^2$ via eigenfunctions, arXiv: 1812.03712
[8] Ambrosio L., Honda S., Tewodrose D., “Short-time behavior of the heat kernel and Weyl's law on ${\rm RCD}^*(K,N)$ spaces”, Ann. Global Anal. Geom., 53 (2018), 97–119, arXiv: 1701.03906 | DOI | MR | Zbl
[9] Ambrosio L., Mondino A., Savaré G., Nonlinear diffusion equations and curvature conditions in metric measure spaces, Mem. Amer. Math. Soc., 262, 2019, v+121 pp., arXiv: 1509.07273 | DOI | MR
[10] Anderson M. T., “Hausdorff perturbations of Ricci-flat manifolds and the splitting theorem”, Duke Math. J., 68 (1992), 67–82 | DOI | MR | Zbl
[11] Bérard P., Besson G., Gallot S., “Embedding Riemannian manifolds by their heat kernel”, Geom. Funct. Anal., 4 (1994), 373–398 | DOI | MR
[12] Bruè E., Semola D., “Constancy of dimension for ${\rm RCD}^*(K,N)$ spaces via regularity of Lagrangian flows”, Comm. Pure Appl. Math. (to appear) , arXiv: 1803.04387 | DOI
[13] Burago Y., Gromov M., Perelman G., “A.D Aleksandrov spaces with curvatures bounded below”, Russian Math. Surveys, 47:2 (1992), 1–58 | DOI | MR | Zbl
[14] Cavalletti F., Milman E., The globalization theorem for the curvature dimension condition, arXiv: 1612.07623
[15] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. I”, J. Differential Geom., 46 (1997), 406–480 | DOI | MR | Zbl
[16] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. II”, J. Differential Geom., 54 (2000), 13–35 | DOI | MR | Zbl
[17] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. III”, J. Differential Geom., 54 (2000), 37–74 | DOI | MR | Zbl
[18] Cheeger J., Jiang W., Naber A., Rectifiability of singular sets in noncollapsed spaces with Ricci curvature bounded below, arXiv: 1805.07988
[19] Colding T. H., Naber A., “Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications”, Ann. of Math., 176 (2012), 1173–1229, arXiv: 1102.5003 | DOI | MR | Zbl
[20] Colding T. H., Naber A., “Characterization of tangent cones of noncollapsed limits with lower Ricci bounds and applications”, Geom. Funct. Anal., 23 (2013), 134–148, arXiv: 1108.3244 | DOI | MR | Zbl
[21] De Philippis G., Gigli N., “Non-collapsed spaces with Ricci curvature bounded from below”, J. Éc. polytech. Math., 5 (2018), 613–650, arXiv: 1708.02060 | DOI | MR | Zbl
[22] De Philippis G., Marchese A., Rindler F., “On a conjecture of Cheeger, in Measure Theory in Non-Smooth Spaces”, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017, 145–155, arXiv: 1607.02554 | DOI | MR
[23] Erbar M., Kuwada K., Sturm K.-T., “On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces”, Invent. Math., 201 (2015), 993–1071, arXiv: 1303.4382 | DOI | MR | Zbl
[24] Fukaya K., “Collapsing of Riemannian manifolds and eigenvalues of Laplace operator”, Invent. Math., 87 (1987), 517–547 | DOI | MR | Zbl
[25] Gigli N., The splitting theorem in non-smooth context, arXiv: 1302.5555
[26] Gigli N., Nonsmooth differential geometry – an approach tailored for spaces with Ricci curvature bounded from below, Mem. Amer. Math. Soc., 251, 2018, v+161 pp., arXiv: 1407.0809 | DOI | MR
[27] Gigli N., Han B.-X., “Independence on $p$ of weak upper gradients on ${\rm RCD}$ spaces”, J. Funct. Anal., 271 (2016), 1–11, arXiv: 1407.7350 | DOI | MR | Zbl
[28] Gigli N., Mondino A., Savaré G., “Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows”, Proc. Lond. Math. Soc., 111 (2015), 1071–1129, arXiv: 1311.4907 | DOI | MR | Zbl
[29] Gigli N., Pasqualetto E., “Behaviour of the reference measure on ${\rm RCD}$ spaces under charts”, Comm. Pure Appl. Math. (to appear) , arXiv: 1607.05188
[30] Hajłasz P., Koskela P., “Sobolev meets Poincaré”, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1211–1215 | MR | Zbl
[31] Han B.-X., “Ricci tensor on ${\rm RCD}^*(K,N)$ spaces”, J. Geom. Anal., 28 (2018), 1295–1314, arXiv: 1412.0441 | DOI | MR | Zbl
[32] Hattori K., “The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds”, Geom. Topol., 21 (2017), 2683–2723, arXiv: 1503.07278 | DOI | MR | Zbl
[33] Honda S., “A weakly second-order differential structure on rectifiable metric measure spaces”, Geom. Topol., 18 (2014), 633–668, arXiv: 1112.0099 | DOI | MR | Zbl
[34] Honda S., “New differential operator and non-collapsed ${\rm RCD}$ spaces”, Geom. Topol. (to appear) , arXiv: 1905.00123
[35] Honda S., Sun S., Zhang R., “A note on the collapsing geometry of hyperkähler four manifolds”, Sci. China Math., 62 (2019), 2195–2210 | DOI | MR | Zbl
[36] Kapovitch V., “Perelman's stability theorem”, Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, 103–136, arXiv: math.DG/0703002 | DOI | MR | Zbl
[37] Kapovitch V., Mondino A., On the topology and the boundary of $N$-dimensional ${\rm RCD}(K,N)$ spaces, arXiv: 11907.02614
[38] Kell M., Mondino A., “On the volume measure of non-smooth spaces with Ricci curvature bounded below”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 593–610, arXiv: 1607.02036 | MR | Zbl
[39] Kitabeppu Y., “A sufficient condition to a regular set being of positive measure on ${\rm RCD}$ spaces”, Potential Anal., 51 (2019), 179–196, arXiv: 1708.04309 | DOI | MR | Zbl
[40] Lott J., Villani C., “Ricci curvature for metric-measure spaces via optimal transport”, Ann. of Math., 169 (2009), 903–991, arXiv: math.DG/0412127 | DOI | MR | Zbl
[41] Menguy X., “Examples of nonpolar limit spaces”, Amer. J. Math., 122 (2000), 927–937 | DOI | MR | Zbl
[42] Menguy X., “Noncollapsing examples with positive Ricci curvature and infinite topological type”, Geom. Funct. Anal., 10 (2000), 600–627 | DOI | MR | Zbl
[43] Menguy X., “Examples of strictly weakly regular points”, Geom. Funct. Anal., 11 (2001), 124–131 | DOI | MR | Zbl
[44] Mondino A., Naber A., “Structure theory of metric measure spaces with lower Ricci curvature bounds”, J. Eur. Math. Soc., 21 (2019), 1809–1854, arXiv: 1405.2222 | DOI | MR | Zbl
[45] Naber A., “The geometry of Ricci curvature”, Proceedings of the International Congress of Mathematicians (Seoul 2014), v. II, Kyung Moon Sa, Seoul, 2014, 911–937 | MR | Zbl
[46] Perelman G., Spaces with curvature bounded below II, Preprint | MR
[47] Petrunin A., “Alexandrov meets Lott–Villani–Sturm”, Münster J. Math., 4 (2011), 53–64, arXiv: 1003.5948 | MR | Zbl
[48] Rajala T., “Local Poincaré inequalities from stable curvature conditions on metric spaces”, Calc. Var. Partial Differential Equations, 44 (2012), 477–494, arXiv: 1107.4842 | DOI | MR | Zbl
[49] Sturm K.-T., “On the geometry of metric measure spaces. I”, Acta Math., 196 (2006), 65–131 | DOI | MR | Zbl
[50] Sturm K.-T., “On the geometry of metric measure spaces. II”, Acta Math., 196 (2006), 133–177 | DOI | MR | Zbl
[51] Villani C., Optimal transport: old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[52] Yamaguchi T., “Collapsing and pinching under a lower curvature bound”, Ann. of Math., 133 (1991), 317–357 | DOI | MR | Zbl
[53] Zhang H.-C., Zhu X.-P., “Ricci curvature on Alexandrov spaces and rigidity theorems”, Comm. Anal. Geom., 18 (2010), 503–553, arXiv: 0912.3190 | DOI | MR
[54] Zhang H.-C., Zhu X.-P., “Weyl's law on ${\rm RCD}^*(K, N)$ metric measure spaces”, Comm. Anal. Geom., 27 (2019), 1869–1914, arXiv: 1701.01967 | DOI | Zbl