Geometric Approach to Quantum Theory
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate quantum theory taking as a starting point the cone of states.
Keywords: state, cone, quantum.
@article{SIGMA_2020_16_a19,
     author = {Albert Schwarz},
     title = {Geometric {Approach} to {Quantum} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a19/}
}
TY  - JOUR
AU  - Albert Schwarz
TI  - Geometric Approach to Quantum Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a19/
LA  - en
ID  - SIGMA_2020_16_a19
ER  - 
%0 Journal Article
%A Albert Schwarz
%T Geometric Approach to Quantum Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a19/
%G en
%F SIGMA_2020_16_a19
Albert Schwarz. Geometric Approach to Quantum Theory. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a19/

[1] Foot R., Joshi G. C., “Space-time symmetries of superstring and Jordan algebras”, Internat. J. Theoret. Phys., 28 (1989), 1449–1462 | DOI | MR | Zbl

[2] Hanche-Olsen H., Størmer E., Jordan operator algebras, Monographs and Studies in Mathematics, 21, Pitman (Advanced Publishing Program), Boston, MA, 1984 | MR | Zbl

[3] Jordan P., von Neumann J., Wigner E. P., “On an algebraic generalization of the quantum mechanical formalism”, The Collected Works of Eugene Paul Wigner, Part A, The Scientific Papers, v. I, Springer-Verlag, Berlin, 1993, 298–333 | DOI | MR

[4] Kac V. G., “Classification of simple $Z$-graded Lie superalgebras and simple Jordan superalgebras”, Comm. Algebra, 5 (1977), 1375–1400 | DOI | MR | Zbl

[5] Kac V. G., Martinez C., Zelmanov E., Graded simple Jordan superalgebras of growth one, Mem. Amer. Math. Soc., 150, 2001, x+140 pp. | DOI | MR

[6] Schwarz A., Scattering matrix and inclusive scattering matrix in algebraic quantum field theory, arXiv: 1908.09388

[7] Schwarz A. S., Tyupkin Yu. S., “Measurement theory and the Schrödinger equation”, Quantum Field Theory and Quantum Statistics, v. 1, Hilger, Bristol, 1987, 667–675 | MR

[8] Vinberg E. B., “The theory of convex homogeneous cones”, Trans. Moscow Math. Soc., 12 (1963), 340–403 | MR | Zbl

[9] Vinberg E. B., “Structure of the group of automorphisms of a homogeneous convex cone”, Trans. Moscow Math. Soc., 13 (1965), 56–83 | MR | Zbl

[10] Vinberg E. B., Gindikin S. G., Pyatetskii-Shapiro I. I., “Classification and canonical realization of complex homogeneous bounded domains”, Trans. Moscow Math. Soc., 12 (1963), 404–437 | MR | Zbl

[11] Xu Y., Theory of complex homogeneous bounded domains, Mathematics and its Applications, 569, Kluwer Academic Publishers, Dordrecht, 2005 | DOI | MR