A Faithful Braid Group Action on the Stable Category of Tricomplexes
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bicomplexes of vector spaces frequently appear throughout algebra and geometry. In Section 2 we explain how to think about the arrows in the spectral sequence of a bicomplex via its indecomposable summands. Polycomplexes seem to be much more rare. In Section 3 of this paper we rethink a well-known faithful categorical braid group action via an action on the stable category of tricomplexes.
Keywords: braid group, categorical action, spectral sequence, stable category.
Mots-clés : bicomplexes, tricomplexes
@article{SIGMA_2020_16_a18,
     author = {Mikhail Khovanov and You Qi},
     title = {A {Faithful} {Braid} {Group} {Action} on the {Stable} {Category} of {Tricomplexes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a18/}
}
TY  - JOUR
AU  - Mikhail Khovanov
AU  - You Qi
TI  - A Faithful Braid Group Action on the Stable Category of Tricomplexes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a18/
LA  - en
ID  - SIGMA_2020_16_a18
ER  - 
%0 Journal Article
%A Mikhail Khovanov
%A You Qi
%T A Faithful Braid Group Action on the Stable Category of Tricomplexes
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a18/
%G en
%F SIGMA_2020_16_a18
Mikhail Khovanov; You Qi. A Faithful Braid Group Action on the Stable Category of Tricomplexes. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a18/

[1] Cartan H., Eilenberg S., Homological algebra, Princeton University Press, Princeton, N.J., 1956 | MR | Zbl

[2] Cathelineau J.-L., “Projective configurations, homology of orthogonal groups, and Milnor $K$-theory”, Duke Math. J., 121 (2004), 343–387 | DOI | MR | Zbl

[3] Chow T. Y., “You could have invented spectral sequences”, Notices Amer. Math. Soc., 53 (2006), 15–19 | MR | Zbl

[4] Deligne P., Griffiths P., Morgan J., Sullivan D., “Real homotopy theory of Kähler manifolds”, Invent. Math., 29 (1975), 245–274 | DOI | MR | Zbl

[5] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[6] Fomenko A., Fuchs D., Homotopical topology, Graduate Texts in Mathematics, 273, 2nd ed., Springer, Cham, 2016 | DOI | MR | Zbl

[7] Gelfand S. I., Manin Yu. I., Methods of homological algebra, Springer Monographs in Mathematics, 2nd ed., Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[8] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978 | MR | Zbl

[9] Happel D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University Press, Cambridge, 1988 | DOI | MR | Zbl

[10] Huerfano R. S., Khovanov M., “Categorification of some level two representations of quantum $\mathfrak{sl}_n$”, J. Knot Theory Ramifications, 15 (2006), 695–713, arXiv: math.QA/0204333 | DOI | MR | Zbl

[11] Keller B., “Deriving DG categories”, Ann. Sci. École Norm. Sup. (4), 27 (1994), 63–102 | DOI | MR | Zbl

[12] Khovanov M., “A functor-valued invariant of tangles”, Algebr. Geom. Topol., 2 (2002), 665–741, arXiv: math.QA/0103190 | DOI | MR | Zbl

[13] Khovanov M., Quiver representations and spectral sequences, Lecture notes at Columbia University, 2010 http://people.virginia.edu/ỹq2dw/qrss.pdf

[14] Khovanov M., “Hopfological algebra and categorification at a root of unity: the first steps”, J. Knot Theory Ramifications, 25 (2016), 1640006, 26 pp., arXiv: math.QA/0509083 | DOI | MR | Zbl

[15] Khovanov M., Qi Y., “An approach to categorification of some small quantum groups”, Quantum Topol., 6 (2015), 185–311, arXiv: 1208.0616 | DOI | MR | Zbl

[16] Khovanov M., Seidel P., “Quivers, Floer cohomology, and braid group actions”, J. Amer. Math. Soc., 15 (2002), 203–271, arXiv: math.QA/0006056 | DOI | MR | Zbl

[17] Lam T. Y., Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[18] McCleary J., A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics, 58, 2nd ed., Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[19] Newlander A., Nirenberg L., “Complex analytic coordinates in almost complex manifolds”, Ann. of Math., 65 (1957), 391–404 | DOI | MR | Zbl

[20] Olver P. J., “Invariant submanifold flows”, J. Phys. A: Math. Theor., 41 (2008), 344017, 22 pp. | DOI | MR | Zbl

[21] Qi Y., “Hopfological algebra”, Compos. Math., 150 (2014), 1–45, arXiv: 1205.1814 | DOI | MR

[22] Seidel P., Thomas R., “Braid group actions on derived categories of coherent sheaves”, Duke Math. J., 108 (2001), 37–108, arXiv: math.AG/0001043 | DOI | MR | Zbl

[23] Sharapov A. A., “Variational tricomplex and BRST theory”, Geometric Methods in Physics, Trends Math., Birkhäuser/Springer, Cham, 2016, 331–341, arXiv: 1511.05711 | DOI | MR | Zbl

[24] Stekolshchik R., Notes on Coxeter transformations and the McKay correspondence, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl

[25] Stelzig J., On the structure of double complexes, arXiv: 1812.00865

[26] Weibel C. A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994 | DOI | MR | Zbl

[27] Wells Jr. R.O., Differential analysis on complex manifolds, Graduate Texts in Mathematics, 65, 2nd ed., Springer-Verlag, New York–Berlin, 1980 | DOI | MR | Zbl

[28] Yau D., “Deformation bicomplex of module algebras”, Homology Homotopy Appl., 10 (2008), 97–128, arXiv: 0707.3640 | DOI | MR | Zbl