Finite-Dimensional Irreducible Modules of the Racah Algebra at Characteristic Zero
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Assume that $\mathbb{F}$ is an algebraically closed field with characteristic zero. The Racah algebra $\Re$ is the unital associative $\mathbb{F}$-algebra defined by generators and relations in the following way. The generators are $A$, $B$, $C$, $D$ and the relations assert that $[A,B]=[B,C]=[C,A]=2D$ and that each of $[A,D]+AC-BA$, $[B,D]+BA-CB$, $[C,D]+CB-AC$ is central in $\Re$. In this paper we discuss the finite-dimensional irreducible $\Re$-modules in detail and classify them up to isomorphism. To do this, we apply an infinite-dimensional $\Re$-module and its universal property. We additionally give the necessary and sufficient conditions for $A$, $B$, $C$ to be diagonalizable on finite-dimensional irreducible $\Re$-modules.
Keywords: quadratic algebra, irreducible modules, tridiagonal pairs, universal property.
Mots-clés : Racah algebra
@article{SIGMA_2020_16_a17,
     author = {Hau-Wen Huang and Sarah Bockting-Conrad},
     title = {Finite-Dimensional {Irreducible} {Modules} of the {Racah} {Algebra} at {Characteristic} {Zero}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a17/}
}
TY  - JOUR
AU  - Hau-Wen Huang
AU  - Sarah Bockting-Conrad
TI  - Finite-Dimensional Irreducible Modules of the Racah Algebra at Characteristic Zero
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a17/
LA  - en
ID  - SIGMA_2020_16_a17
ER  - 
%0 Journal Article
%A Hau-Wen Huang
%A Sarah Bockting-Conrad
%T Finite-Dimensional Irreducible Modules of the Racah Algebra at Characteristic Zero
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a17/
%G en
%F SIGMA_2020_16_a17
Hau-Wen Huang; Sarah Bockting-Conrad. Finite-Dimensional Irreducible Modules of the Racah Algebra at Characteristic Zero. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a17/

[1] Bockting-Conrad S., Huang H.-W., The Casimir elements of the Racah algebra, arXiv: 1711.09574

[2] Bu L., Hou B., Gao S., “The classification of finite-dimensional irreducible modules of the Racah algebra”, Comm. Algebra, 47 (2019), 1869–1891 | DOI | MR | Zbl

[3] De Bie H., Genest V. X., van de Vijver W., Vinet L., “A higher rank Racah algebra and the ${\mathbb Z}^n_2$ Laplace–Dunkl operator”, J. Phys. A: Math. Theor., 51 (2018), 025203, 20 pp., arXiv: 1610.02638 | DOI | MR | Zbl

[4] De Bie H., van de Vijver W., A discrete realization of the higher rank Racah algebra, arXiv: 1808.10520

[5] Gal'bert O. F., Granovskiĭ Ya.I., Zhedanov A. S., “Dynamical symmetry of anisotropic singular oscillator”, Phys. Lett. A, 153 (1991), 177–180 | DOI | MR

[6] Genest V. X., Vinet L., Zhedanov A., “The equitable Racah algebra from three $\mathfrak{su}(1,1)$ algebras”, J. Phys. A: Math. Theor., 47 (2014), 025203, 12 pp., arXiv: 1309.3540 | DOI | MR | Zbl

[7] Genest V. X., Vinet L., Zhedanov A., “The Racah algebra and superintegrable models”, J. Phys. Conf. Ser., 512 (2014), 012011, 15 pp., arXiv: 1312.3874 | DOI

[8] Genest V. X., Vinet L., Zhedanov A., “Superintegrability in two dimensions and the Racah–Wilson algebra”, Lett. Math. Phys., 104 (2014), 931–952, arXiv: 1307.5539 | DOI | MR | Zbl

[9] Genest V. X., Vinet L., Zhedanov A., “Embeddings of the Racah algebra into the Bannai–Ito algebra”, SIGMA, 11 (2015), 050, 11 pp., arXiv: 1504.00558 | DOI | MR | Zbl

[10] Granovskiĭ Ya.A., Zhedanov A. S., “Nature of the symmetry group of the $6j$-symbol”, Soviet Phys. JETP, 94 (1988) | MR

[11] Granovskiĭ Ya.I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamical symmetry of the Schrödinger equation”, Soviet Phys. JETP, 99 (1991), 205–209 | MR

[12] Hou B., Wang M., Gao S., “The classification of finite-dimensional irreducible modules of Bannai/Ito algebra”, Comm. Algebra, 44 (2016), 919–943 | DOI | MR | Zbl

[13] Huang H.-W., “Finite-dimensional irreducible modules of the universal Askey–Wilson algebra”, Comm. Math. Phys., 340 (2015), 959–984, arXiv: 1210.1740 | DOI | MR | Zbl

[14] Huang H.-W., Finite-dimensional modules of the Racah algebra and the additive DAHA of type $\big(C_1^\vee,C_1\big)$, arXiv: 1906.09160

[15] Huang H. W., The Racah algebra as a subalgebra of the Bannai–Ito algebra, arXiv: 1906.11745

[16] Huang H.-W., Finite-dimensional irreducible modules of Bannai–Ito algebra at characteristic zero, arXiv: 1910.11447

[17] Lévy-Leblond J.-M., Lévy-Nahas M., “Symmetrical coupling of three angular momenta”, J. Math. Phys., 6 (1965), 1372–1380 | DOI | MR

[18] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl