Legendrian DGA Representations and the Colored Kauffman Polynomial
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any Legendrian knot $K$ in standard contact $\mathbb{R}^3$ we relate counts of ungraded ($1$-graded) representations of the Legendrian contact homology DG-algebra $(\mathcal{A}(K),\partial)$ with the $n$-colored Kauffman polynomial. To do this, we introduce an ungraded $n$-colored ruling polynomial, $R^1_{n,K}(q)$, as a linear combination of reduced ruling polynomials of positive permutation braids and show that (i) $R^1_{n,K}(q)$ arises as a specialization $F_{n,K}(a,q)\big|_{a^{-1}=0}$ of the $n$-colored Kauffman polynomial and (ii) when $q$ is a power of two $R^1_{n,K}(q)$ agrees with the total ungraded representation number, $\operatorname{Rep}_1\big(K, \mathbb{F}_q^n\big)$, which is a normalized count of $n$-dimensional representations of $(\mathcal{A}(K),\partial)$ over the finite field $\mathbb{F}_q$. This complements results from [Leverson C., Rutherford D., Quantum Topol. 11 (2020), 55–118] concerning the colored HOMFLY-PT polynomial, $m$-graded representation numbers, and $m$-graded ruling polynomials with $m \neq 1$.
Keywords: Legendrian knots, Kauffman polynomial, ruling polynomial
Mots-clés : augmentations.
@article{SIGMA_2020_16_a16,
     author = {Justin Murray and Dan Rutherford},
     title = {Legendrian {DGA} {Representations} and the {Colored} {Kauffman} {Polynomial}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a16/}
}
TY  - JOUR
AU  - Justin Murray
AU  - Dan Rutherford
TI  - Legendrian DGA Representations and the Colored Kauffman Polynomial
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a16/
LA  - en
ID  - SIGMA_2020_16_a16
ER  - 
%0 Journal Article
%A Justin Murray
%A Dan Rutherford
%T Legendrian DGA Representations and the Colored Kauffman Polynomial
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a16/
%G en
%F SIGMA_2020_16_a16
Justin Murray; Dan Rutherford. Legendrian DGA Representations and the Colored Kauffman Polynomial. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a16/

[1] Beliakova A., Blanchet C., “Skein construction of idempotents in Birman–Murakami–Wenzl algebras”, Math. Ann., 321 (2001), 347–373, arXiv: math.QA/0006143 | DOI | MR | Zbl

[2] Bennequin D., “Entrelacements et équations de Pfaff”, Astérisque, 107, 1983, 87–161 | MR | Zbl

[3] Birman J. S., Wenzl H., “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., 313 (1989), 249–273 | DOI | MR | Zbl

[4] Bourgeois F., Ekholm T., Eliashberg Y., “Effect of Legendrian surgery”, Geom. Topol., 16 (2012), 301–389, arXiv: 0911.0026 | DOI | MR | Zbl

[5] Brion M., “Representations of quivers”, Geometric Methods in Representation Theory. I, Sémin. Congr., 24, Soc. Math. France, Paris, 2012, 103–144 | MR | Zbl

[6] Chekanov Yu., “Differential algebra of Legendrian links”, Invent. Math., 150 (2002), 441–483, arXiv: math.GT/9709233 | DOI | MR | Zbl

[7] Chekanov Yu., Pushkar' P., “Combinatorics of fronts of Legendrian links and the Arnol'd 4-conjectures”, Russian Math. Surveys, 60 (2005), 95–149 | DOI | MR | Zbl

[8] Dipper R., Hu J., Stoll F., “Symmetrizers and antisymmetrizers for the BMW-algebra”, J. Algebra Appl., 12 (2013), 1350032, 22 pp., arXiv: 1109.0342 | DOI | MR | Zbl

[9] Ekholm T., Etnyre J. B., Ng L., Sullivan M. G., “Knot contact homology”, Geom. Topol., 17 (2013), 975–1112, arXiv: 1109.1542 | DOI | MR | Zbl

[10] Etnyre J. B., Ng L., Legendrian contact homology in ${\mathbb R}^3$, arXiv: 1811.10966

[11] Etnyre J. B., Ng L., Sabloff J. M., “Invariants of Legendrian knots and coherent orientations”, J. Symplectic Geom., 1 (2002), 321–367, arXiv: math.SG/0101145 | DOI | MR | Zbl

[12] Franks J., Williams R. F., “Braids and the Jones polynomial”, Trans. Amer. Math. Soc., 303 (1987), 97–108 | DOI | MR | Zbl

[13] Fuchs D., “Chekanov–Eliashberg invariant of Legendrian knots: existence of augmentations”, J. Geom. Phys., 47 (2003), 43–65 | DOI | MR | Zbl

[14] Fuchs D., Ishkhanov T., “Invariants of Legendrian knots and decompositions of front diagrams”, Mosc. Math. J., 4 (2004), 707–717 | DOI | MR | Zbl

[15] Fuchs D., Tabachnikov S., “Invariants of Legendrian and transverse knots in the standard contact space”, Topology, 36 (1997), 1025–1053 | DOI | MR | Zbl

[16] Geiges H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008 | DOI | MR | Zbl

[17] Heckenberger I., Schüler A., “Symmetrizer and antisymmetrizer of the Birman–Wenzl–Murakami algebras”, Lett. Math. Phys., 50 (1999), 45–51, arXiv: math.QA/0002170 | DOI | MR | Zbl

[18] Henry M. B., “Connections between Floer-type invariants and Morse-type invariants of Legendrian knots”, Pacific J. Math., 249 (2011), 77–133, arXiv: 0911.1735 | DOI | MR | Zbl

[19] Henry M. B., Rutherford D., “Ruling polynomials and augmentations over finite fields”, J. Topol., 8 (2015), 1–37, arXiv: 1308.4662 | DOI | MR | Zbl

[20] Leverson C., Rutherford D., “Satellite ruling polynomials, DGA representations, and the colored HOMFLY-PT polynomial”, Quantum Topol., 11 (2020), 55–118, arXiv: 1802.10531 | DOI | MR

[21] Murakami J., “The representations of the $q$-analogue of Brauer's centralizer algebras and the Kauffman polynomial of links”, Publ. Res. Inst. Math. Sci., 26 (1990), 935–945 | DOI | MR | Zbl

[22] Ng L., “Computable Legendrian invariants”, Topology, 42 (2003), 55–82, arXiv: math.GT/0011265 | DOI | MR | Zbl

[23] Ng L., “A skein approach to Bennequin-type inequalities”, Int. Math. Res. Not., 2008 (2008), rnn116, 18 pp., arXiv: 0709.2141 | DOI | MR | Zbl

[24] Ng L., Rutherford D., “Satellites of Legendrian knots and representations of the Chekanov–Eliashberg algebra”, Algebr. Geom. Topol., 13 (2013), 3047–3097, arXiv: 1206.2259 | DOI | MR | Zbl

[25] Ng L., Rutherford D., Shende V., Sivek S., Zaslow E., Augmentations are sheaves, arXiv: 1502.04939

[26] Ng L., Sabloff J. M., “The correspondence between augmentations and rulings for Legendrian knots”, Pacific J. Math., 224 (2006), 141–150, arXiv: math.SG/0503168 | DOI | MR | Zbl

[27] Ng L., Traynor L., “Legendrian solid-torus links”, J. Symplectic Geom., 2 (2004), 411–443, arXiv: math.SG/0407068 | DOI | MR | Zbl

[28] Rudolph L., “A congruence between link polynomials”, Math. Proc. Cambridge Philos. Soc., 107 (1990), 319–327 | DOI | MR | Zbl

[29] Rutherford D., “Thurston–Bennequin number, Kauffman polynomial, and ruling invariants of a Legendrian link: the Fuchs conjecture and beyond”, Int. Math. Res. Not., 2006 (2006), 78591, 15 pp., arXiv: math.GT/0511097 | DOI | MR | Zbl

[30] Rutherford D., “HOMFLY-PT polynomial and normal rulings of Legendrian solid torus links”, Quantum Topol., 2 (2011), 183–215, arXiv: 1006.3285 | DOI | MR | Zbl

[31] Sabloff J. M., “Augmentations and rulings of Legendrian knots”, Int. Math. Res. Not., 2005 (2005), 1157–1180, arXiv: math.SG/0409032 | DOI | MR | Zbl

[32] Tabachnikov S., “Estimates for the Bennequin number of Legendrian links from state models for knot polynomials”, Math. Res. Lett., 4 (1997), 143–156 | DOI | MR | Zbl

[33] Traynor L., “Generating function polynomials for Legendrian links”, Geom. Topol., 5 (2001), 719–760, arXiv: math.GT/0110229 | DOI | MR | Zbl