Intersections of Hypersurfaces and Ring of Conditions of a Spherical Homogeneous Space
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a version of the BKK theorem for the ring of conditions of a spherical homogeneous space $G/H$. We also introduce the notion of ring of complete intersections, firstly for a spherical homogeneous space and secondly for an arbitrary variety. Similarly to the ring of conditions of the torus, the ring of complete intersections of $G/H$ admits a description in terms of volumes of polytopes.
Keywords: BKK theorem, spherical variety, ring of conditions.
Mots-clés : Newton–Okounkov polytope
@article{SIGMA_2020_16_a15,
     author = {Kiumars Kaveh and Askold G. Khovanskii},
     title = {Intersections of {Hypersurfaces} and {Ring} of {Conditions} of a {Spherical} {Homogeneous} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a15/}
}
TY  - JOUR
AU  - Kiumars Kaveh
AU  - Askold G. Khovanskii
TI  - Intersections of Hypersurfaces and Ring of Conditions of a Spherical Homogeneous Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a15/
LA  - en
ID  - SIGMA_2020_16_a15
ER  - 
%0 Journal Article
%A Kiumars Kaveh
%A Askold G. Khovanskii
%T Intersections of Hypersurfaces and Ring of Conditions of a Spherical Homogeneous Space
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a15/
%G en
%F SIGMA_2020_16_a15
Kiumars Kaveh; Askold G. Khovanskii. Intersections of Hypersurfaces and Ring of Conditions of a Spherical Homogeneous Space. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a15/

[1] Alexeev V., Brion M., “Toric degenerations of spherical varieties”, Selecta Math. (N.S.), 10 (2004), 453–478, arXiv: math.AG/0403379 | DOI | MR | Zbl

[2] Bernstein D. N., “The number of roots of a system of equations”, Funct. Anal. Appl., 9 (1975), 183–185 | DOI | MR

[3] Bifet E., De Concini C., Procesi C., “Cohomology of regular embeddings”, Adv. Math., 82 (1990), 1–34 | DOI | MR | Zbl

[4] Brion M., “Groupe de {P}icard et nombres caractéristiques des variétés sphériques”, Duke Math. J., 58 (1989), 397–424 | DOI | MR | Zbl

[5] De Concini C., Procesi C., “Complete symmetric varieties. II Intersection theory”, Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985, 481–513 | DOI | MR

[6] Eisenbud D., Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[7] Esterov A., Kazarnovskii B., Khovanskii A. G., “Newton polyhedra and tropical geometry”, Russian Math. Surveys (to appear) | MR

[8] Kaveh K., “Note on cohomology rings of spherical varieties and volume polynomial”, J. Lie Theory, 21 (2011), 263–283, arXiv: math.AG/0312503 | MR | Zbl

[9] Kaveh K., Khovanskii A. G., “Mixed volume and an extension of intersection theory of divisors”, Mosc. Math. J., 10 (2010), 343–375, arXiv: 0812.0433 | DOI | MR | Zbl

[10] Kaveh K., Khovanskii A. G., “Convex bodies associated to actions of reductive groups”, Mosc. Math. J., 12 (2012), 369–396, arXiv: 1001.4830 | DOI | MR | Zbl

[11] Kaveh K., Khovanskii A. G., “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. of Math., 176 (2012), 925–978 | DOI | MR | Zbl

[12] Kaveh K., Khovanskii A. G., “Note on the Grothendieck group of subspaces of rational functions and Shokurov's Cartier $b$-divisors”, Canad. Math. Bull., 57 (2014), 562–572, arXiv: 1302.2402 | DOI | MR | Zbl

[13] Kaveh K., Villella E., On a notion of anticanonical class for families of convex polytopes, arXiv: 1802.06674

[14] Kazarnovskii B., “Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations”, Funct. Anal. Appl., 21 (1987), 319–321 | DOI | MR

[15] Kazarnovskii B., Khovanskii A. G., Newton polyhedra, tropical geometry and the ring of condition for $({\mathbb C}^*)^n$, arXiv: 1705.04248 | MR

[16] Khovanskii A. G., “Newton polyhedra, and the genus of complete intersections”, Funct. Anal. Appl., 12 (1978), 38–46 | DOI | MR

[17] Knop F., Kraft H., Luna D., Vust T., “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 63–75 | DOI | MR

[18] Kouchnirenko A. G., “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32 (1976), 1–31 | DOI | MR

[19] Lazarsfeld R., Mustaţă M., “Convex bodies associated to linear series”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 783–835, arXiv: 0805.4559 | DOI | MR | Zbl

[20] Littelmann P., Procesi C., “Equivariant cohomology of wonderful compactifications”, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math., 92, Birkhäuser Boston, Boston, MA, 1990, 219–262 | MR

[21] Okunkov A., “A remark on the Hilbert polynomial of a spherical manifold”, Funct. Anal. Appl., 31 (1997), 138–140 | DOI | MR | Zbl

[22] Perrin N., “On the geometry of spherical varieties”, Transform. Groups, 19 (2014), 171–223, arXiv: 1211.1277 | DOI | MR | Zbl

[23] Popov V. L., “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR Izv., 8 (1974), 301–327 | DOI | MR

[24] Strickland E., “The ring of conditions of a semisimple group”, J. Algebra, 320 (2008), 3069–3078 | DOI | MR | Zbl