Representations of Quantum Affine Algebras in their $R$-Matrix Realization
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the isomorphisms between the $R$-matrix and Drinfeld presentations of the quantum affine algebras in types $B$, $C$ and $D$ produced in our previous work to describe finite-dimensional irreducible representations in the $R$-matrix realization. We also review the isomorphisms for the Yangians of these types and use Gauss decomposition to establish an equivalence of the descriptions of the representations in the $R$-matrix and Drinfeld presentations of the Yangians.
Keywords: $R$-matrix presentation, Drinfeld polynomials, highest weight representation
Mots-clés : Gauss decomposition.
@article{SIGMA_2020_16_a144,
     author = {Naihuan Jing and Ming Liu and Alexander Molev},
     title = {Representations of {Quantum} {Affine} {Algebras} in their $R${-Matrix} {Realization}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a144/}
}
TY  - JOUR
AU  - Naihuan Jing
AU  - Ming Liu
AU  - Alexander Molev
TI  - Representations of Quantum Affine Algebras in their $R$-Matrix Realization
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a144/
LA  - en
ID  - SIGMA_2020_16_a144
ER  - 
%0 Journal Article
%A Naihuan Jing
%A Ming Liu
%A Alexander Molev
%T Representations of Quantum Affine Algebras in their $R$-Matrix Realization
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a144/
%G en
%F SIGMA_2020_16_a144
Naihuan Jing; Ming Liu; Alexander Molev. Representations of Quantum Affine Algebras in their $R$-Matrix Realization. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a144/

[1] Arnaudon D., Molev A., Ragoucy E., “On the $R$-matrix realization of Yangians and their representations”, Ann. Henri Poincaré, 7 (2006), 1269–1325, arXiv: math.QA/0511481 | DOI | MR

[2] Bazhanov V. V., “Trigonometric solutions of triangle equations and classical Lie algebras”, Phys. Lett. B, 159 (1985), 321–324 | DOI | MR

[3] Bazhanov V. V., “Integrable quantum systems and classical Lie algebras”, Comm. Math. Phys., 113 (1987), 471–503 | DOI | MR

[4] Beck J., “Braid group action and quantum affine algebras”, Comm. Math. Phys., 165 (1994), 555–568, arXiv: hep-th/9404165 | DOI | MR

[5] Brundan J., Kleshchev A., “Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$”, Comm. Math. Phys., 254 (2005), 191–220, arXiv: math.QA/0407011 | DOI | MR

[6] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR

[7] Chari V., Pressley A., “Quantum affine algebras and their representations”, Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995, 59–78, arXiv: hep-th/9411145 | DOI | MR

[8] Ding J. T., Frenkel I. B., “Isomorphism of two realizations of quantum affine algebra $U_q(\mathfrak{gl}(n))$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI | MR

[9] Drinfeld V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258 | MR

[10] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[11] Drinfeld V. G., “A new realization of Yangians and of quantum affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR

[12] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR

[13] Gel'fand I. M., Retakh V. S., “A theory of noncommutative determinants and characteristic functions of graphs”, Funct. Anal. Appl., 26 (1992), 231–246 | DOI | MR

[14] Gow L., Molev A., “Representations of twisted $q$-Yangians”, Selecta Math. (N.S.), 16 (2010), 439–499, arXiv: 0909.4905 | DOI | MR

[15] Guay N., Regelskis V., Wendlandt C., “Equivalences between three presentations of orthogonal and symplectic Yangians”, Lett. Math. Phys., 109 (2019), 327–379, arXiv: 1706.05176 | DOI | MR

[16] Hernandez D., “Representations of quantum affinizations and fusion product”, Transform. Groups, 10 (2005), 163–200, arXiv: math.QA/0312336 | DOI | MR

[17] Jimbo M., “A $q$-difference analogue of $U({\mathfrak g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR

[18] Jimbo M., “Quantum $R$ matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR

[19] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$”, Comm. Math. Phys., 361 (2018), 827–872, arXiv: 1705.08155 | DOI | MR

[20] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$”, J. Math. Phys., 61 (2020), 031701, 41 pp., arXiv: 1903.00204 | DOI | MR

[21] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$”, SIGMA, 16 (2020), 043, 49 pp., arXiv: 1911.03496 | DOI | MR

[22] Khoroshkin S., Pakuliak S., Tarasov V., “Off-shell Bethe vectors and Drinfeld currents”, J. Geom. Phys., 57 (2007), 1713–1732, arXiv: math.QA/0610517 | DOI | MR

[23] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories (Tvärminne, 1981), Lecture Notes in Phys., 151, Springer, Berlin – New York, 1982, 61–119 | DOI | MR

[24] Molev A., Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR

[25] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Central extensions of quantum current groups”, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR

[26] Reshetikhin N.Yu., Takhtadzhyan L. A., Faddeev L. D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR

[27] Tarasov V. O., “Structure of quantum $L$-operators for the $R$-matrix of the $XXZ$-model”, Theoret. and Math. Phys., 61 (1984), 1065–1072 | DOI | MR

[28] Tarasov V. O., “Irreducible monodromy matrices for the $R$-matrix of the $XXZ$-model and local lattice quantum Hamiltonians”, Theoret. and Math. Phys., 63 (1985), 440–454 | DOI | MR

[29] Wendlandt C., “The $R$-matrix presentation for the Yangian of a simple Lie algebra”, Comm. Math. Phys., 363 (2018), 289–332, arXiv: 1709.08162 | DOI | MR

[30] Zamolodchikov A. B., Zamolodchikov A. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120 (1979), 253–291 | DOI | MR