Mots-clés : Gauss decomposition.
@article{SIGMA_2020_16_a144,
author = {Naihuan Jing and Ming Liu and Alexander Molev},
title = {Representations of {Quantum} {Affine} {Algebras} in their $R${-Matrix} {Realization}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a144/}
}
TY - JOUR AU - Naihuan Jing AU - Ming Liu AU - Alexander Molev TI - Representations of Quantum Affine Algebras in their $R$-Matrix Realization JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a144/ LA - en ID - SIGMA_2020_16_a144 ER -
%0 Journal Article %A Naihuan Jing %A Ming Liu %A Alexander Molev %T Representations of Quantum Affine Algebras in their $R$-Matrix Realization %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a144/ %G en %F SIGMA_2020_16_a144
Naihuan Jing; Ming Liu; Alexander Molev. Representations of Quantum Affine Algebras in their $R$-Matrix Realization. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a144/
[1] Arnaudon D., Molev A., Ragoucy E., “On the $R$-matrix realization of Yangians and their representations”, Ann. Henri Poincaré, 7 (2006), 1269–1325, arXiv: math.QA/0511481 | DOI | MR
[2] Bazhanov V. V., “Trigonometric solutions of triangle equations and classical Lie algebras”, Phys. Lett. B, 159 (1985), 321–324 | DOI | MR
[3] Bazhanov V. V., “Integrable quantum systems and classical Lie algebras”, Comm. Math. Phys., 113 (1987), 471–503 | DOI | MR
[4] Beck J., “Braid group action and quantum affine algebras”, Comm. Math. Phys., 165 (1994), 555–568, arXiv: hep-th/9404165 | DOI | MR
[5] Brundan J., Kleshchev A., “Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$”, Comm. Math. Phys., 254 (2005), 191–220, arXiv: math.QA/0407011 | DOI | MR
[6] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR
[7] Chari V., Pressley A., “Quantum affine algebras and their representations”, Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995, 59–78, arXiv: hep-th/9411145 | DOI | MR
[8] Ding J. T., Frenkel I. B., “Isomorphism of two realizations of quantum affine algebra $U_q(\mathfrak{gl}(n))$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI | MR
[9] Drinfeld V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258 | MR
[10] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[11] Drinfeld V. G., “A new realization of Yangians and of quantum affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR
[12] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR
[13] Gel'fand I. M., Retakh V. S., “A theory of noncommutative determinants and characteristic functions of graphs”, Funct. Anal. Appl., 26 (1992), 231–246 | DOI | MR
[14] Gow L., Molev A., “Representations of twisted $q$-Yangians”, Selecta Math. (N.S.), 16 (2010), 439–499, arXiv: 0909.4905 | DOI | MR
[15] Guay N., Regelskis V., Wendlandt C., “Equivalences between three presentations of orthogonal and symplectic Yangians”, Lett. Math. Phys., 109 (2019), 327–379, arXiv: 1706.05176 | DOI | MR
[16] Hernandez D., “Representations of quantum affinizations and fusion product”, Transform. Groups, 10 (2005), 163–200, arXiv: math.QA/0312336 | DOI | MR
[17] Jimbo M., “A $q$-difference analogue of $U({\mathfrak g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR
[18] Jimbo M., “Quantum $R$ matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR
[19] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$”, Comm. Math. Phys., 361 (2018), 827–872, arXiv: 1705.08155 | DOI | MR
[20] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$”, J. Math. Phys., 61 (2020), 031701, 41 pp., arXiv: 1903.00204 | DOI | MR
[21] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$”, SIGMA, 16 (2020), 043, 49 pp., arXiv: 1911.03496 | DOI | MR
[22] Khoroshkin S., Pakuliak S., Tarasov V., “Off-shell Bethe vectors and Drinfeld currents”, J. Geom. Phys., 57 (2007), 1713–1732, arXiv: math.QA/0610517 | DOI | MR
[23] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories (Tvärminne, 1981), Lecture Notes in Phys., 151, Springer, Berlin – New York, 1982, 61–119 | DOI | MR
[24] Molev A., Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR
[25] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Central extensions of quantum current groups”, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR
[26] Reshetikhin N.Yu., Takhtadzhyan L. A., Faddeev L. D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR
[27] Tarasov V. O., “Structure of quantum $L$-operators for the $R$-matrix of the $XXZ$-model”, Theoret. and Math. Phys., 61 (1984), 1065–1072 | DOI | MR
[28] Tarasov V. O., “Irreducible monodromy matrices for the $R$-matrix of the $XXZ$-model and local lattice quantum Hamiltonians”, Theoret. and Math. Phys., 63 (1985), 440–454 | DOI | MR
[29] Wendlandt C., “The $R$-matrix presentation for the Yangian of a simple Lie algebra”, Comm. Math. Phys., 363 (2018), 289–332, arXiv: 1709.08162 | DOI | MR
[30] Zamolodchikov A. B., Zamolodchikov A. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120 (1979), 253–291 | DOI | MR