Solitons of Some Nonlinear Sigma-Like Models
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a set of differential identities for some class of matrices. These identities are used to derive the $N$-soliton solutions for the Pohlmeyer nonlinear sigma-model, two-dimensional self-dual Yang–Mills equations and some modification of the vector Calapso equation.
Keywords: nonlinear sigma-models, vector Calapso equation, self-dual Yang–Mills equations
Mots-clés : explicit solutions, solitons.
@article{SIGMA_2020_16_a143,
     author = {V. E. Vekslerchik},
     title = {Solitons of {Some} {Nonlinear} {Sigma-Like} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a143/}
}
TY  - JOUR
AU  - V. E. Vekslerchik
TI  - Solitons of Some Nonlinear Sigma-Like Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a143/
LA  - en
ID  - SIGMA_2020_16_a143
ER  - 
%0 Journal Article
%A V. E. Vekslerchik
%T Solitons of Some Nonlinear Sigma-Like Models
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a143/
%G en
%F SIGMA_2020_16_a143
V. E. Vekslerchik. Solitons of Some Nonlinear Sigma-Like Models. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a143/

[1] Ablowitz M. J., Ladik J. F., “Nonlinear differential-difference equations”, J. Math. Phys., 16 (1975), 598–603 | DOI | MR | Zbl

[2] Barashenkov I. V., Getmanov B. S., “Multisoliton solutions in the scheme for unified description of integrable relativistic massive fields. Nondegenerate ${\mathfrak{sl}}(2,{\mathbb C})$ case”, Comm. Math. Phys., 112 (1987), 423–446 | DOI | MR

[3] Carillo S., Schiebold C., “Matrix Korteweg–de Vries and modified Korteweg–de Vries hierarchies: noncommutative soliton solutions”, J. Math. Phys., 52 (2011), 053507, 21 pp. | DOI | MR | Zbl

[4] Dimakis A., Müller-Hoissen F., “Bidifferential calculus approach to AKNS hierarchies and their solutions”, SIGMA, 6 (2010), 055, 27 pp., arXiv: 1004.1627 | DOI | MR | Zbl

[5] Dimakis A., Müller-Hoissen F., “Solutions of matrix NLS systems and their discretizations: a unified treatment”, Inverse Problems, 26 (2010), 095007, 55 pp., arXiv: 1001.0133 | DOI | MR | Zbl

[6] Fu W., Nijhoff F. W., “Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations”, Proc. A., 473 (2017), 20160195, 22 pp. | DOI | MR

[7] Gekhtman M., Kasman A., “Integrable systems and rank-one conditions for rectangular matrices”, Theoret. and Math. Phys., 133 (2002), 1498–1503, arXiv: math-ph/0408038 | DOI | MR

[8] Gekhtman M., Kasman A., “On KP generators and the geometry of the HBDE”, J. Geom. Phys., 56 (2006), 282–309, arXiv: math-ph/0502012 | DOI | MR | Zbl

[9] Gekhtman M., Kasman A., “Tau-functions, Grassmannians and rank one conditions”, J. Comput. Appl. Math., 202 (2007), 80–87 | DOI | MR | Zbl

[10] Getmanov B. S., “New Lorentz-invariant system with exact multisoliton solutions”, JETP Lett., 25 (1977), 119–122

[11] Getmanov B. S., “Integrable model of a nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions”, Theoret. and Math. Phys., 38 (1979), 124–130 | DOI | MR

[12] Hietarinta J., “A search for bilinear equations passing Hirota's three-soliton condition. I KdV-type bilinear equations”, J. Math. Phys., 28 (1987), 1732–1742 | DOI | MR

[13] Hietarinta J., Joshi N., Nijhoff F. W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR

[14] Kasman A., Gekhtman M., “Solitons and almost-intertwining matrices”, J. Math. Phys., 42 (2001), 3540–3551, arXiv: math-ph/0011011 | DOI | MR

[15] Lund F., “Example of a relativistic, completely integrable, Hamiltonian system”, Phys. Rev. Lett., 38 (1977), 1175–1178 | DOI | MR

[16] Manakov S. V., Zakharov V. E., “Three-dimensional model of relativistic-invariant field theory, integrable by the inverse scattering transform”, Lett. Math. Phys., 5 (1981), 247–253 | DOI | MR

[17] Nijhoff F., Atkinson J., Hietarinta J., “Soliton solutions for ABS lattice equations. I Cauchy matrix approach”, J. Phys. A: Math. Theor., 42 (2009), 404005, 34 pp., arXiv: 0902.4873 | DOI | MR

[18] Nijhoff F. W., Quispel G. R.W., Capel H. W., “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97 (1983), 125–128 | DOI | MR

[19] Pohlmeyer K., “Integrable Hamiltonian systems and interactions through quadratic constraints”, Comm. Math. Phys., 46 (1976), 207–221 | DOI | MR

[20] Pohlmeyer K., “On the Lagrangian theory of anti-self-dual fields in four-dimensional Euclidean space”, Comm. Math. Phys., 72 (1980), 37–47 | DOI | MR

[21] Pohlmeyer K., Rehren K. H., “Reduction of the two-dimensional ${\rm O}(n)$ nonlinear $\sigma$-model”, J. Math. Phys., 20 (1979), 2628–2632 | DOI | MR

[22] Quispel G. R.W., Nijhoff F. W., Capel H. W., van der Linden J., “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125 (1984), 344–380 | DOI | MR

[23] Ramani A., “Inverse scattering, ordinary differential equations of Painlevé-type, and Hirota's bilinear formalism”, Ann. New York Acad. Sci., 373 (1981), 54–67 | DOI

[24] Sakhnovich A., “Exact solutions of nonlinear equations and the method of operator identities”, Linear Algebra Appl., 182 (1993), 109–126 | DOI | MR

[25] Sakhnovich A., “Generalized Bäcklund–Darboux transformation: spectral properties and nonlinear equations”, J. Math. Anal. Appl., 262 (2001), 274–306 | DOI | MR

[26] Schiebold C., “The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions”, J. Phys. A: Math. Theor., 43 (2010), 434030, 18 pp. | DOI | MR

[27] Sun Y.-Y., Zhang D.-J., Nijhoff F. W., “The Sylvester equation and the elliptic Korteweg-de Vries system”, J. Math. Phys., 58 (2017), 033504, 25 pp., arXiv: 1507.05476 | DOI | MR

[28] Vekslerchik V. E., “An ${\rm O}(3,1)$ nonlinear $\sigma$-model and the Ablowitz–Ladik hierarchy”, J. Phys. A: Math. Gen., 27 (1994), 6299–6313 | DOI | MR

[29] Vekslerchik V. E., “Inverse scattering transform for the ${\rm O}(3,1)$ nonlinear $\sigma$-model”, Inverse Problems, 12 (1996), 517–534 | DOI | MR

[30] Vekslerchik V. E., “Soliton Fay identities: I Dark soliton case”, J. Phys. A: Math. Theor., 47 (2014), 415202, 19 pp., arXiv: 1409.0406 | DOI | MR

[31] Vekslerchik V. E., “Soliton fay identities: II Bright soliton case”, J. Phys. A: Math. Theor., 48 (2015), 445204, 18 pp., arXiv: 1510.00908 | DOI | MR

[32] Vekslerchik V. E., “Solitons of a simple nonlinear model on the cubic lattice”, J. Phys. A: Math. Theor., 50 (2017), 475201, 15 pp., arXiv: 1710.08651 | DOI | MR

[33] Vekslerchik V. E., “Explicit solutions for a nonlinear vector model on the triangular lattice”, SIGMA, 15 (2019), 028, 17 pp., arXiv: 1812.06465 | DOI | MR

[34] Vekslerchik V. E., “Solitons of the $(2+2)$-dimensional Toda lattice”, J. Phys. A: Math. Theor., 52 (2019), 045202, 11 pp., arXiv: 1812.03695 | DOI

[35] Vekslerchik V. E., “Solitons of the vector KdV and Yamilov lattices”, J. Phys. A: Math. Theor., 52 (2019), 465203, 12 pp., arXiv: 1910.07228 | DOI | MR

[36] Xu D.-D., Zhang D.-J., Zhao S.-L., “The Sylvester equation and integrable equations: I The Korteweg–de Vries system and sine-Gordon equation”, J. Nonlinear Math. Phys., 21 (2014), 382–406, arXiv: 1401.5949 | DOI | MR

[37] Yang C. N., “Condition of self-duality for ${\rm SU}(2)$ gauge fields on Euclidean four-dimensional space”, Phys. Rev. Lett., 38 (1977), 1377–1379 | DOI | MR

[38] Zhang D.-J., Zhao S.-L., “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131 (2013), 72–103, arXiv: 1208.3752 | DOI | MR