Riemannian Geometry of a Discretized Circle and Torus
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extend the results of Riemannian geometry over finite groups and provide a full classification of all linear connections for the minimal noncommutative differential calculus over a finite cyclic group. We solve the torsion-free and metric compatibility condition in general and show that there are several classes of solutions, out of which only special ones are compatible with a metric that gives a Hilbert $C^\ast$-module structure on the space of the one-forms. We compute curvature and scalar curvature for these metrics and find their continuous limits.
Keywords: noncommutative Riemannian geometry, linear connections, curvature.
@article{SIGMA_2020_16_a142,
     author = {Arkadiusz Bochniak and Andrzej Sitarz and Pawel{\l} Zalecki},
     title = {Riemannian {Geometry} of a {Discretized} {Circle} and {Torus}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a142/}
}
TY  - JOUR
AU  - Arkadiusz Bochniak
AU  - Andrzej Sitarz
AU  - Pawelł Zalecki
TI  - Riemannian Geometry of a Discretized Circle and Torus
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a142/
LA  - en
ID  - SIGMA_2020_16_a142
ER  - 
%0 Journal Article
%A Arkadiusz Bochniak
%A Andrzej Sitarz
%A Pawelł Zalecki
%T Riemannian Geometry of a Discretized Circle and Torus
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a142/
%G en
%F SIGMA_2020_16_a142
Arkadiusz Bochniak; Andrzej Sitarz; Pawelł Zalecki. Riemannian Geometry of a Discretized Circle and Torus. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a142/

[1] Argota-Quiroz J. N., Majid S., Quantum gravity on polygons and $\mathbb{R}\times \mathbb{Z}_n$ FLRW model

[2] Balachandran A. P., Bimonte G., Ercolessi E., Landi G., Lizzi F., Sparano G., Teotonio-Sobrinho P., “Noncommutative lattices as finite approximations”, J. Geom. Phys., 18 (1996), 163–194, arXiv: hep-th/9510217 | DOI | MR | Zbl

[3] Barrett J. W., “Matrix geometries and fuzzy spaces as finite spectral triples”, J. Math. Phys., 56 (2015), 082301, 25 pp., arXiv: 1502.05383 | DOI | MR | Zbl

[4] Barrett J. W., Gaunt J., Finite spectral triples for the fuzzy torus, arXiv: 1908.06796

[5] Beggs E., Majid S., “$*$-compatible connections in noncommutative Riemannian geometry”, J. Geom. Phys., 61 (2011), 95–124, arXiv: 0904.0539 | DOI | MR | Zbl

[6] Beggs E., Majid S., “Gravity induced from quantum spacetime”, Classical Quantum Gravity, 31 (2014), 035020, 39 pp., arXiv: 1305.2403 | DOI | MR | Zbl

[7] Beggs E., Majid S., “Spectral triples from bimodule connections and Chern connections”, J. Noncommut. Geom., 11 (2017), 669–701, arXiv: 1508.04808 | DOI | MR | Zbl

[8] Beggs E., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, 355, Springer, Cham, 2020 | DOI | Zbl

[9] Bhowmick J., Goswami D., Joardar S., A new look at Levi-Civita connection in noncommutative geometry

[10] Bhowmick J., Goswami D., Landi G., “Levi-Civita connections and vector fields for noncommutative differential calculi”, Internat. J. Math., 31 (2020), 2050065, 23 pp., arXiv: 2001.01545 | DOI | MR | Zbl

[11] Bhowmick J., Goswami D., Landi G., “On the Koszul formula in noncommutative geometry”, Rev. Math. Phys., 32 (2020), 2050032, 33 pp., arXiv: 1910.09306 | DOI | MR

[12] Bhowmick J., Goswami D., Mukhopadhyay S., “Levi-Civita connections for a class of spectral triples”, Lett. Math. Phys., 110 (2020), 835–884, arXiv: 1809.06721 | DOI | MR | Zbl

[13] Bresser K., Müller-Hoissen F., Dimakis A., Sitarz A., “Non-commutative geometry of finite groups”, J. Phys. A: Math. Gen., 29 (1996), 2705–2735, arXiv: q-alg/9509004 | DOI | MR | Zbl

[14] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[15] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[16] Da̧browski L., Sitarz A., “An asymmetric noncommutative torus”, SIGMA, 11 (2015), 075, 11 pp., arXiv: 1406.4645 | DOI | MR

[17] Dimakis A., Müller-Hoissen F., “Differential calculus and gauge theory on finite sets”, J. Phys. A: Math. Gen., 27 (1994), 3159–3178, arXiv: hep-th/9401149 | DOI | MR | Zbl

[18] Dubois-Violette M., Madore J., Masson T., Mourad J., “On curvature in noncommutative geometry”, J. Math. Phys., 37 (1996), 4089–4102, arXiv: q-alg/9512004 | DOI | MR | Zbl

[19] Dubois-Violette M., Michor P. W., “Dérivations et calcul différentiel non commutatif. II”, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 927–931 | MR | Zbl

[20] Fathizadeh F., Khalkhali M., “Scalar curvature for the noncommutative two torus”, J. Noncommut. Geom., 7 (2013), 1145–1183, arXiv: 1110.3511 | DOI | MR | Zbl

[21] Fathizadeh F., Khalkhali M., “Curvature in noncommutative geometry”, Advances in Noncommutative Geometry: on the Occasion of Alain Connes' 70th Birthday, eds. A. Chamseddine, C. Consani, N. Higson, M. Khalkhali, H. Moscovici, G. Yu, Springer, Cham, 2019, 321–420 | DOI | MR | Zbl

[22] Floricel R., Ghorbanpour A., Khalkhali M., “The Ricci curvature in noncommutative geometry”, J. Noncommut. Geom., 13 (2019), 269–296, arXiv: 1612.06688 | DOI | MR | Zbl

[23] Glaser L., “Scaling behaviour in random non-commutative geometries”, J. Phys. A: Math. Theor., 50 (2017), 275201, 18 pp., arXiv: 1612.00713 | DOI | MR | Zbl

[24] Landi G., An introduction to noncommutative spaces and their geometries, Lecture Notes in Physics. New Series: Monographs, 51, Springer-Verlag, Berlin, 1997 | DOI | MR

[25] Madore J., Masson T., Mourad J., “Linear connections on matrix geometries”, Classical Quantum Gravity, 12 (1995), 1429–1440, arXiv: hep-th/9506183 | DOI | MR | Zbl

[26] Majid S., “Noncommutative Riemannian geometry on graphs”, J. Geom. Phys., 69 (2013), 74–93, arXiv: 1011.5898 | DOI | MR | Zbl

[27] Majid S., “Quantum gravity on a square graph”, Classical Quantum Gravity, 36 (2019), 245009, 23 pp., arXiv: 1810.10831 | DOI | MR

[28] Majid S., “Quantum Riemannian geometry and particle creation on the integer line”, Classical Quantum Gravity, 36 (2019), 135011, 22 pp., arXiv: 1811.06264 | DOI | MR

[29] Mourad J., “Linear connections in non-commutative geometry”, Classical Quantum Gravity, 12 (1995), 965–974, arXiv: hep-th/9410201 | DOI | MR | Zbl

[30] Pérez-Sánchez C. I., Computing the spectral action for fuzzy geometries: from random noncommutative geometry to bi-tracial multimatrix models, arXiv: 1912.13288

[31] Sitarz A., “Metric on quantum spaces”, Lett. Math. Phys., 31 (1994), 35–39 | DOI | MR | Zbl

[32] Torres E. L., Majid S., Quantum gravity and Riemannian geometry on the fuzzy sphere

[33] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl