An Elliptic Hypergeometric Function Approach to Branching Rules
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove Macdonald-type deformations of a number of well-known classical branching rules by employing identities for elliptic hypergeometric integrals and series. We also propose some conjectural branching rules and allied conjectures exhibiting a novel type of vanishing behaviour involving partitions with empty 2-cores.
Keywords: branching formulas, elliptic hypergeometric series, elliptic Selberg integrals, interpolation functions, Koornwinder polynomials, Littlewood identities, Macdonald polynomials.
@article{SIGMA_2020_16_a141,
     author = {Chul-hee Lee and Eric M. Rains and S. Ole Warnaar},
     title = {An {Elliptic} {Hypergeometric} {Function} {Approach} to {Branching} {Rules}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a141/}
}
TY  - JOUR
AU  - Chul-hee Lee
AU  - Eric M. Rains
AU  - S. Ole Warnaar
TI  - An Elliptic Hypergeometric Function Approach to Branching Rules
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a141/
LA  - en
ID  - SIGMA_2020_16_a141
ER  - 
%0 Journal Article
%A Chul-hee Lee
%A Eric M. Rains
%A S. Ole Warnaar
%T An Elliptic Hypergeometric Function Approach to Branching Rules
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a141/
%G en
%F SIGMA_2020_16_a141
Chul-hee Lee; Eric M. Rains; S. Ole Warnaar. An Elliptic Hypergeometric Function Approach to Branching Rules. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a141/

[1] Albion S. P., Rains E. M., Warnaar S. O., AFLT-type Selberg integrals, arXiv: 2001.05637

[2] Andrews G. E., “On $q$-analogues of the Watson and Whipple summations”, SIAM J. Math. Anal., 7 (1976), 332–336 | DOI | MR | Zbl

[3] Baker T. H., Forrester P. J., “Transformation formulas for multivariable basic hypergeometric series”, Methods Appl. Anal., 6 (1999), 147–164, arXiv: math.QA/9803146 | DOI | MR | Zbl

[4] Bressoud D., Ismail M. E.H., Stanton D., “Change of base in Bailey pairs”, Ramanujan J., 4 (2000), 435–453, arXiv: math.CO/9909053 | DOI | MR | Zbl

[5] Coskun H., Gustafson R. A., “Well-poised Macdonald functions $W_\lambda$ and Jackson coefficients $\omega_\lambda$ on $BC_n$”, Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 127–155, arXiv: math.CO/0412153 | DOI | MR | Zbl

[6] de Bruijn N. G., “On some multiple integrals involving determinants”, J. Indian Math. Soc. (N.S.), 19 (1955), 133–151 | MR | Zbl

[7] van Diejen J. F., Emsiz E., Math. Z., 269 (2011), Pieri formulas for Macdonald's spherical functions and polynomials, arXiv: 1009.4482 | DOI | MR

[8] van Diejen J. F., Emsiz E., J. Algebra, 444 (2015), Branching formula for Macdonald–Koornwinder polynomials, arXiv: 1408.2280 | DOI | MR

[9] van Diejen J. F., Emsiz E., Representation Theory, Special Functions and Painlevé Equations, RIMS 2015, Adv. Stud. Pure Math., 76, Math. Soc. Japan, Tokyo, 2018, Branching rules for symmetric hypergeometric polynomials, arXiv: 1601.06186 | DOI | MR

[10] van Diejen J. F., Spiridonov V. P., Math. Res. Lett., 7 (2000), An elliptic Macdonald–Morris conjecture and multiple modular hypergeometric sums | DOI | MR

[11] van Diejen J. F., Spiridonov V. P., Int. Math. Res. Not., 2001 (2001), Elliptic Selberg integrals | DOI | MR

[12] Frenkel I. B., Turaev V. G., The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions | DOI | MR

[13] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[14] Gustafson R. A., “A generalization of Selberg's beta integral”, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 97–105 | DOI | MR | Zbl

[15] Hoshino A., Shiraishi J., “Macdonald polynomials of type $C_n$ with one-column diagrams and deformed Catalan numbers”, SIGMA, 14 (2018), 101, 33 pp., arXiv: 1801.09939 | DOI | MR | Zbl

[16] Hoshino A., Shiraishi J., “Branching rules for Koornwinder polynomials with one column diagrams and matrix inversions”, SIGMA, 16 (2020), 084, 28 pp., arXiv: 2002.02148 | DOI | MR | Zbl

[17] Ito M., Noumi M., “Derivation of a $BC_n$ elliptic summation formula via the fundamental invariants”, Constr. Approx., 45 (2017), 33–46, arXiv: 1504.07108 | DOI | MR | Zbl

[18] King R. C., “Branching rules for classical Lie groups using tensor and spinor methods”, J. Phys. A: Math. Gen., 8 (1975), 429–449 | DOI | MR | Zbl

[19] Koike K., Terada I., “Young-diagrammatic methods for the representation theory of the classical groups of type $B_n$, $C_n$, $D_n$”, J. Algebra, 107 (1987), 466–511 | DOI | MR | Zbl

[20] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR | Zbl

[21] Krattenthaler C., “Identities for classical group characters of nearly rectangular shape”, J. Algebra, 209 (1998), 1–64, arXiv: math.RT/9808118 | DOI | MR | Zbl

[22] Kwon J. H., “Combinatorial extension of stable branching rules for classical groups”, Trans. Amer. Math. Soc., 370 (2018), 6125–6152, arXiv: 1512.01877 | DOI | MR | Zbl

[23] Lam T., Lapointe L., Morse J., Shimozono M., The poset of $k$-shapes and branching rules for $k$-Schur functions, Mem. Amer. Math. Soc., 223, 2013, vi+101 pp. | DOI | MR

[24] Lascoux A., Warnaar S. O., “Branching rules for symmetric functions and $\mathfrak{sl}_n$ basic hypergeometric series”, Adv. in Appl. Math., 46 (2011), 424–456, arXiv: 0903.3996 | DOI | MR | Zbl

[25] Littlewood D. E., The theory of group characters and matrix representations of groups, Oxford University Press, New York, 1940 | MR

[26] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[27] Macdonald I. G., “Orthogonal polynomials associated with root systems”, Sém. Lothar. Combin., 45 (2000), B45a, 40 pp., arXiv: math.QA/0011046 | MR | Zbl

[28] Mimachi K., “A duality of MacDonald–Koornwinder polynomials and its application to integral representations”, Duke Math. J., 107 (2001), 265–281 | DOI | MR | Zbl

[29] Naito S., Sagaki D., “An approach to the branching rule from ${\mathfrak{sl}}_{2n}(\mathbb C)$ to ${\mathfrak{sp}}_{2n}(\mathbb C)$ via Littelmann's path model”, J. Algebra, 286 (2005), 187–212 | DOI | MR | Zbl

[30] Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars–Macdonald $q$-difference operators, arXiv: 1206.5364

[31] Okada S., “Applications of minor summation formulas to rectangular-shaped representations of classical groups”, J. Algebra, 205 (1998), 337–367 | DOI | MR | Zbl

[32] Okounkov A., “${\rm BC}$-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials”, Transform. Groups, 3 (1998), 181–207, arXiv: q-alg/9611011 | DOI | MR | Zbl

[33] Okounkov A., Olshanski G., “Shifted Schur functions. II The binomial formula for characters of classical groups and its applications”, Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, RI, 1998, 245–271 | DOI | MR | Zbl

[34] Proctor R. A., “Shifted plane partitions of trapezoidal shape”, Proc. Amer. Math. Soc., 89 (1983), 553–559 | DOI | MR | Zbl

[35] Rains E. M., “${\rm BC}_n$-symmetric polynomials”, Transform. Groups, 10 (2005), 63–132, arXiv: math.QA/0112035 | DOI | MR | Zbl

[36] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR | Zbl

[37] Rains E. M., “Limits of elliptic hypergeometric integrals”, Ramanujan J., 18 (2009), 257–306, arXiv: math.CA/0607093 | DOI | MR | Zbl

[38] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR | Zbl

[39] Rains E. M., “Elliptic Littlewood identities”, J. Combin. Theory Ser. A, 119 (2012), 1558–1609, arXiv: 0806.0871 | DOI | MR | Zbl

[40] Rains E. M., “Multivariate quadratic transformations and the interpolation kernel”, SIGMA, 14 (2018), 019, 69 pp., arXiv: 1408.0305 | DOI | MR | Zbl

[41] Rains E. M., Vazirani M., “Vanishing integrals of Macdonald and Koornwinder polynomials”, Transform. Groups, 12 (2007), 725–759 | DOI | MR | Zbl

[42] Rains E. M., Warnaar S. O., Bounded Littlewood identities, Mem. Amer. Math. Soc. (to appear) , arXiv: 1506.02755

[43] Rosengren H., “A proof of a multivariable elliptic summation formula conjectured by Warnaar”, $q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001, 193–202, arXiv: math.CA/0101073 | DOI | MR | Zbl

[44] Rosengren H., Schlosser M. J., “Multidimensional matrix inversions and elliptic hypergeometric series on root systems”, SIGMA, 16 (2020), 088, 21 pp., arXiv: 2005.02203 | DOI | MR | Zbl

[45] Rosengren H., Warnaar S. O., “Elliptic hypergeometric functions associated with root systems”, Encyclopedia of Special Functions: The Askey–Bateman Project, v. 2, Multivariable Special Functions, Cambridge University Press, Cambridge, 2020, 159–186, arXiv: 1704.08406 | MR

[46] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl

[47] Schumann B., Torres J., “A non-Levi branching rule in terms of Littelmann paths”, Proc. Lond. Math. Soc., 117 (2018), 1077–1100, arXiv: 1607.08225 | DOI | MR | Zbl

[48] Shiraishi J., “A conjecture about raising operators for Macdonald polynomials”, Lett. Math. Phys., 73 (2005), 71–81, arXiv: math.QA/0503727 | DOI | MR | Zbl

[49] Spiridonov V. P., “On the elliptic beta function”, Russian Math. Surveys, 56 (2001), 185–186 | DOI | MR | Zbl

[50] Spiridonov V. P., “Theta hypergeometric series”, Asymptotic Combinatorics with Application to Mathematical Physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, arXiv: math.CA/0303204 | DOI | MR

[51] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[52] Warnaar S. O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502, arXiv: math.QA/0001006 | DOI | MR | Zbl

[53] Warnaar S. O., “Extensions of the well-poised and elliptic well-poised Bailey lemma”, Indag. Math. (N.S.), 14 (2003), 571–588, arXiv: math.CA/0309241 | DOI | MR | Zbl

[54] Warnaar S. O., “Summation formulae for elliptic hypergeometric series”, Proc. Amer. Math. Soc., 133 (2005), 519–527, arXiv: math.CA/0309242 | DOI | MR | Zbl