Extension Quiver for Lie Superalgebra $\mathfrak{q}(3)$
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe all blocks of the category of finite-dimensional $\mathfrak{q}(3)$-supermodules by providing their extension quivers. We also obtain two general results about the representation of $\mathfrak{q}(n)$: we show that the Ext quiver of the standard block of $\mathfrak{q}(n)$ is obtained from the principal block of $\mathfrak{q}(n-1)$ by identifying certain vertices of the quiver and prove a “virtual” BGG-reciprocity for $\mathfrak{q}(n)$. The latter result is used to compute the radical filtrations of $\mathfrak{q}(3)$ projective covers.
Keywords: Lie superalgebra, extension quiver, cohomology, flag supermanifold.
@article{SIGMA_2020_16_a140,
     author = {Nikolay Grantcharov and Vera Serganova},
     title = {Extension {Quiver} for {Lie} {Superalgebra} $\mathfrak{q}(3)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a140/}
}
TY  - JOUR
AU  - Nikolay Grantcharov
AU  - Vera Serganova
TI  - Extension Quiver for Lie Superalgebra $\mathfrak{q}(3)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a140/
LA  - en
ID  - SIGMA_2020_16_a140
ER  - 
%0 Journal Article
%A Nikolay Grantcharov
%A Vera Serganova
%T Extension Quiver for Lie Superalgebra $\mathfrak{q}(3)$
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a140/
%G en
%F SIGMA_2020_16_a140
Nikolay Grantcharov; Vera Serganova. Extension Quiver for Lie Superalgebra $\mathfrak{q}(3)$. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a140/

[1] Benson D. J., Representations and cohomology, v. I, Cambridge Studies in Advanced Mathematics, 30, Basic representation theory of finite groups and associative algebras, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[2] Boe B. D., Kujawa J. R., Nakano D. K., “Cohomology and support varieties for Lie superalgebras”, Trans. Amer. Math. Soc., 362 (2010), 6551–6590, arXiv: math.RT/0609363 | DOI | MR | Zbl

[3] Brundan J., “Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra ${\mathfrak q}(n)$”, Adv. Math., 182 (2004), 28–77, arXiv: math.RT/0207024 | DOI | MR | Zbl

[4] Brundan J., “Modular representations of the supergroup $Q(n)$. II”, Pacific J. Math., 224 (2006), 65–90 | DOI | MR | Zbl

[5] Brundan J., Davidson N., “Type C blocks of super category $\mathcal O$”, Math. Z., 293 (2019), 867–901, arXiv: 1702.05055 | DOI | MR | Zbl

[6] Cheng S.-J., Kwon J.-H., “Finite-dimensional half-integer weight modules over queer Lie superalgebras”, Comm. Math. Phys., 346 (2016), 945–965, arXiv: 1505.06602 | DOI | MR | Zbl

[7] Cheng S.-J., Kwon J.-H., Wang W., “Character formulae for queer Lie superalgebras and canonical bases of types $A/C$”, Comm. Math. Phys., 352 (2017), 1091–1119, arXiv: 1512.00116 | DOI | MR | Zbl

[8] Cheng S.-J., Wang W., Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, 144, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl

[9] Erdmann K., Blocks of tame representation type and related algebras, Lecture Notes in Math., 1428, Springer-Verlag, Berlin, 1990 | DOI | MR | Zbl

[10] Frisk A., “Typical blocks of the category $\mathcal O$ for the queer Lie superalgebra”, J. Algebra Appl., 6 (2007), 731–778 | DOI | MR | Zbl

[11] Germoni J., “Indecomposable representations of special linear Lie superalgebras”, J. Algebra, 209 (1998), 367–401 | DOI | MR | Zbl

[12] Gruson C., Serganova V., “Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras”, Proc. Lond. Math. Soc., 101 (2010), 852–892, arXiv: 0906.0918 | DOI | MR | Zbl

[13] Gruson C., Serganova V., “Bernstein–Gelfand–Gelfand reciprocity and indecomposable projective modules for classical algebraic supergroups”, Mosc. Math. J., 13 (2013), 281–313, arXiv: 1111.6959 | DOI | MR | Zbl

[14] Gruson C., Serganova V., A journey through representation theory: from finite groups to quivers via algebras, Universitext, Springer, Cham, 2018 | DOI | MR | Zbl

[15] Jantzen J. C., Representations of algebraic groups, Mathematical Surveys and Monographs, 107, 2nd ed., Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[16] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl

[17] Manin Yu.I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[18] Mazorchuk V., Miemietz V., “Serre functors for Lie algebras and superalgebras”, Ann. Inst. Fourier (Grenoble), 62 (2012), 47–75, arXiv: 1008.1166 | DOI | MR | Zbl

[19] Meinrenken E., Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 58, Springer, Heidelberg, 2013 | DOI | MR | Zbl

[20] Penkov I., “Characters of typical irreducible finite-dimensional ${\mathfrak q}(n)$-modules”, Funct. Anal. Appl., 20 (1986), 30–37 | DOI | MR | Zbl

[21] Penkov I., Serganova V., “Characters of finite-dimensional irreducible ${\mathfrak q}(n)$-modules”, Lett. Math. Phys., 40 (1997), 147–158 | DOI | MR | Zbl

[22] Penkov I., Serganova V., “Characters of irreducible $G$-modules and cohomology of $G/P$ for the Lie supergroup $G=Q(N)$”, J. Math. Sci., 84 (1997), 1382–1412 | DOI | MR | Zbl

[23] Serganova V., “Quasireductive supergroups”, New Developments in Lie Theory and its Applications, Contemp. Math., 544, Amer. Math. Soc., Providence, RI, 2011, 141–159 | DOI | MR | Zbl

[24] Serganova V., “Finite dimensional representations of algebraic supergroups”, Proceedings of the International Congress of Mathematicians (Seoul, 2014), v. 1, Kyung Moon Sa, Seoul, 2014, 603–632 | MR | Zbl

[25] Sergeev A. N., “The centre of enveloping algebra for Lie superalgebra $Q(n,{\mathbb C})$”, Lett. Math. Phys., 7 (1983), 177–179 | DOI | MR | Zbl