@article{SIGMA_2020_16_a14,
author = {Antonella Marchesiello and Libor \v{S}nobl},
title = {Classical {Superintegrable} {Systems} in a {Magnetic} {Field} that {Separate} in {Cartesian} {Coordinates}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a14/}
}
TY - JOUR AU - Antonella Marchesiello AU - Libor Šnobl TI - Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a14/ LA - en ID - SIGMA_2020_16_a14 ER -
%0 Journal Article %A Antonella Marchesiello %A Libor Šnobl %T Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a14/ %G en %F SIGMA_2020_16_a14
Antonella Marchesiello; Libor Šnobl. Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a14/
[1] Benenti S., Chanu C., Rastelli G., “Variable separation for natural Hamiltonians with scalar and vector potentials on Riemannian manifolds”, J. Math. Phys., 42 (2001), 2065–2091 | DOI | MR | Zbl
[2] Bertrand S., Šnobl L., “On rotationally invariant integrable and superintegrable classical systems in magnetic fields with non-subgroup type integrals”, J. Phys. A: Math. Theor., 52 (2019), 195201, 25 pp., arXiv: 1812.09399 | DOI | MR
[3] Bérubé J., Winternitz P., “Integrable and superintegrable quantum systems in a magnetic field”, J. Math. Phys., 45 (2004), 1959–1973, arXiv: math-ph/0311051 | DOI | MR
[4] Charest F., Hudon C., Winternitz P., “Quasiseparation of variables in the Schrödinger equation with a magnetic field”, J. Math. Phys., 48 (2007), 012105, 16 pp., arXiv: math-ph/0502046 | DOI | MR | Zbl
[5] Dorizzi B., Grammaticos B., Ramani A., Winternitz P., “Integrable Hamiltonian systems with velocity-dependent potentials”, J. Math. Phys., 26 (1985), 3070–3079 | DOI | MR | Zbl
[6] Escobar-Ruiz A. M., López Vieyra J. C., Winternitz P., “Fourth order superintegrable systems separating in polar coordinates. I Exotic potentials”, J. Phys. A: Math. Theor., 50 (2017), 495206, 35 pp., arXiv: 1706.08655 | DOI | MR | Zbl
[7] Escobar-Ruiz A. M., Winternitz P., Yurduşen I., “General $N$th-order superintegrable systems separating in polar coordinates”, J. Phys. A: Math. Theor., 51 (2018), 40LT01, 12 pp., arXiv: 1806.06849 | DOI | MR | Zbl
[8] Escobar-Ruiz M. A., Turbiner A. V., “Two charges on a plane in a magnetic field: special trajectories”, J. Math. Phys., 54 (2013), 022901, 15 pp., arXiv: 1208.2995 | DOI | MR | Zbl
[9] Evans N. W., “Superintegrability in classical mechanics”, Phys. Rev. A, 41 (1990), 5666–5676 | DOI | MR
[10] Evans N. W., Verrier P. E., “Superintegrability of the caged anisotropic oscillator”, J. Math. Phys., 49 (2008), 092902, 10 pp., arXiv: 0808.2146 | DOI | MR | Zbl
[11] Heinzl T., Ilderton A., “Superintegrable relativistic systems in spacetime-dependent background fields”, J. Phys. A: Math. Theor., 50 (2017), 345204, 14 pp., arXiv: 1701.09168 | DOI | MR | Zbl
[12] Kotkin G. L., Serbo V. G., Collection of problems in classical mechanics, International Series in Natural Philosophy, 31, Pergamon Press, 1971 | DOI | MR
[13] Makarov A. A., Smorodinsky J. A., Valiev K., Winternitz P., “A systematic search for nonrelativistic systems with dynamical symmetries”, Nuovo Cimento A, 52 (1967), 1061–1084 | DOI
[14] Marchesiello A., Šnobl L., “Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables”, J. Phys. A: Math. Theor., 50 (2017), 245202, 24 pp. | DOI | MR | Zbl
[15] Marchesiello A., Šnobl L., “An infinite family of maximally superintegrable systems in a magnetic field with higher order integrals”, SIGMA, 14 (2018), 092, 11 pp., arXiv: 1804.03039 | DOI | MR | Zbl
[16] Marchesiello A., Šnobl L., Winternitz P., “Three-dimensional superintegrable systems in a static electromagnetic field”, J. Phys. A: Math. Theor., 48 (2015), 395206, 24 pp., arXiv: 1507.04632 | DOI | MR | Zbl
[17] Marchesiello A., Šnobl L., Winternitz P., “Spherical type integrable classical systems in a magnetic field”, J. Phys. A: Math. Theor., 51 (2018), 135205, 24 pp. | DOI | MR | Zbl
[18] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I Rational function potentials”, J. Math. Phys., 50 (2009), 012101, 23 pp., arXiv: 0807.2858 | DOI | MR | Zbl
[19] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II Painlevé transcendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp., arXiv: 0811.1568 | DOI | MR | Zbl
[20] Marquette I., Sajedi M., Winternitz P., “Fourth order superintegrable systems separating in Cartesian coordinates I Exotic quantum potentials”, J. Phys. A: Math. Theor., 50 (2017), 315201, 29 pp., arXiv: 1703.09751 | DOI | MR | Zbl
[21] Marquette I., Sajedi M., Winternitz P., “Two-dimensional superintegrable systems from operator algebras in one dimension”, J. Phys. A: Math. Theor., 52 (2019), 115202, 27 pp., arXiv: 1810.05793 | DOI
[22] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[23] Post S., Winternitz P., “General $N$th order integrals of motion in the Euclidean plane”, J. Phys. A: Math. Theor., 48 (2015), 405201, 24 pp., arXiv: 1501.00471 | DOI | MR | Zbl
[24] Pucacco G., “On integrable Hamiltonians with velocity dependent potentials”, Celestial Mech. Dynam. Astronom., 90 (2004), 111–125 | DOI | MR | Zbl
[25] Pucacco G., Rosquist K., “Integrable Hamiltonian systems with vector potentials”, J. Math. Phys., 46 (2005), 012701, 25 pp., arXiv: nlin.SI/0405065 | DOI | MR | Zbl
[26] Rodríguez M. A., Tempesta P., Winternitz P., “Reduction of superintegrable systems: the anisotropic harmonic oscillator”, Phys. Rev. E, 78 (2008), 046608, 6 pp., arXiv: 0807.1047 | DOI | MR
[27] Shapovalov V. N., Bagrov V. G., Meshkov A. G., “Separation of variables in the stationary Schrödinger equation”, Soviet Phys. J., 15 (1972), 1115–1119 | DOI | MR
[28] Taut M., “Two electrons in a homogeneous magnetic field: particular analytical solutions”, J. Phys. A: Math. Gen., 27 (1994), 1045–1055 | DOI | MR
[29] Taut M., “Two particles with opposite charge in a homogeneous magnetic field: particular analytical solutions of the two-dimensional Schrödinger equation”, J. Phys. A: Math. Gen., 32 (1999), 5509–5515 | DOI | MR | Zbl
[30] Turbiner A. V., Escobar-Ruiz M. A., “Two charges on a plane in a magnetic field: hidden algebra, (particular) integrability, polynomial eigenfunctions”, J. Phys. A: Math. Theor., 46 (2013), 295204, 15 pp., arXiv: 1303.2345 | DOI | MR | Zbl