Exact Formulas of the Transition Probabilities of the Multi-Species Asymmetric Simple Exclusion Process
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the formulas of the transition probabilities of the $N$-particle multi-species asymmetric simple exclusion processes (ASEP), and show that the transition probabilities are written as a determinant when the order of particles in the final state is the same as the order of particles in the initial state.
Keywords: multi-species ASEP, integrable probability.
Mots-clés : ASEP
@article{SIGMA_2020_16_a138,
     author = {Eunghyun Lee},
     title = {Exact {Formulas} of the {Transition} {Probabilities} of the {Multi-Species} {Asymmetric} {Simple} {Exclusion} {Process}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a138/}
}
TY  - JOUR
AU  - Eunghyun Lee
TI  - Exact Formulas of the Transition Probabilities of the Multi-Species Asymmetric Simple Exclusion Process
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a138/
LA  - en
ID  - SIGMA_2020_16_a138
ER  - 
%0 Journal Article
%A Eunghyun Lee
%T Exact Formulas of the Transition Probabilities of the Multi-Species Asymmetric Simple Exclusion Process
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a138/
%G en
%F SIGMA_2020_16_a138
Eunghyun Lee. Exact Formulas of the Transition Probabilities of the Multi-Species Asymmetric Simple Exclusion Process. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a138/

[1] Chatterjee S., Schütz G. M., “Determinant representation for some transition probabilities in the TASEP with second class particles”, J. Stat. Phys., 140 (2010), 900–916, arXiv: 1003.5815 | DOI | MR | Zbl

[2] Korhonen M., Lee E., “The transition probability and the probability for the left-most particle's position of the $q$-totally asymmetric zero range process”, J. Math. Phys., 55 (2014), 013301, 15 pp., arXiv: 1308.4769 | DOI | MR | Zbl

[3] Kuan J., “Probability distributions of multi-species $q$-TAZRP and ASEP as double cosets of parabolic subgroups”, Ann. Henri Poincaré, 20 (2019), 1149–1173, arXiv: 1801.02313 | DOI | MR | Zbl

[4] Kuan J., “Determinantal expressions in multi-species TASEP”, SIGMA, 16 (2020), 133, 6 pp., arXiv: 2007.02913 | DOI | MR

[5] Kuniba A., Mangazeev V. V., Maruyama S., Okado M., “Stochastic $R$ matrix for $U_q\big(A_n^{(1)}\big)$”, Nuclear Phys. B, 913 (2016), 248–277, arXiv: 1604.08304 | DOI | MR | Zbl

[6] Lee E., “Distribution of a particle's position in the ASEP with the alternating initial condition”, J. Stat. Phys., 140 (2010), 635–647, arXiv: 1004.1470 | DOI | MR | Zbl

[7] Lee E., “The current distribution of the multiparticle hopping asymmetric diffusion model”, J. Stat. Phys., 149 (2012), 50–72, arXiv: 1203.0501 | DOI | MR | Zbl

[8] Lee E., “Some conditional probabilities in the TASEP with second class particles”, J. Math. Phys., 58 (2017), 123301, 11 pp., arXiv: 1707.02539 | DOI | MR | Zbl

[9] Lee E., “On the TASEP with second class particles”, SIGMA, 14 (2018), 006, 17 pp., arXiv: 1705.10544 | DOI | MR | Zbl

[10] Lee E., Wang D., “Distributions of a particle's position and their asymptotics in the $q$-deformed totally asymmetric zero range process with site dependent jumping rates”, Stochastic Process. Appl., 129 (2019), 1795–1828, arXiv: 1703.08839 | DOI | MR | Zbl

[11] Nagao T., Sasamoto T., “Asymmetric simple exclusion process and modified random matrix ensembles”, Nuclear Phys. B, 699 (2004), 487–502, arXiv: cond-mat/0405321 | DOI | MR | Zbl

[12] Rákos A., Schütz G. M., “Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates”, Markov Process. Related Fields, 12 (2006), 323–334, arXiv: cond-mat/0506525 | MR | Zbl

[13] Sasamoto T., “Spatial correlations of the 1D KPZ surface on a flat substrate”, J. Phys. A: Math. Gen., 38 (2005), L549–L556, arXiv: cond-mat/0504417 | DOI | MR

[14] Schütz G. M., “Exact solution of the master equation for the asymmetric exclusion process”, J. Stat. Phys., 88 (1997), 427–445, arXiv: cond-mat/9701019 | DOI | Zbl

[15] Tracy C. A., Widom H., “Integral formulas for the asymmetric simple exclusion process”, Comm. Math. Phys., 279 (2008), 815–844, arXiv: 0704.2633 | DOI | MR | Zbl

[16] Tracy C. A., Widom H., “Erratum to: Integral formulas for the asymmetric simple exclusion process”, Comm. Math. Phys., 304 (2011), 875–878 | DOI | MR | Zbl

[17] Tracy C. A., Widom H., “On the asymmetric simple exclusion process with multiple species”, J. Stat. Phys., 150 (2013), 457–470, arXiv: 1105.4906 | DOI | MR | Zbl

[18] Wang D., Waugh D., “The transition probability of the $q$-TAZRP ($q$-bosons) with inhomogeneous jump rates”, SIGMA, 12 (2016), 037, 16 pp., arXiv: 1512.01612 | DOI | MR | Zbl