@article{SIGMA_2020_16_a137,
author = {Esther Banaian and Elizabeth Kelley},
title = {Snake {Graphs} from {Triangulated} {Orbifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a137/}
}
Esther Banaian; Elizabeth Kelley. Snake Graphs from Triangulated Orbifolds. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a137/
[1] Banaian E., Kelley E., “Snake graphs and frieze patterns from orbifolds”, Sém. Lothar. Combin., 82B (2019), 88, 12 pp., arXiv: 2003.13872 | MR | Zbl
[2] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl
[3] Caldero P., Reineke M., J. Pure Appl. Algebra, 212 (2008), 2369–2380, On the quiver Grassmannian in the acyclic case pp., arXiv: math.RT/0611074 | DOI | MR | Zbl
[4] Canakci I., Schiffler R., “Snake graph calculus and cluster algebras from surfaces”, J. Algebra, 382 (2013), 240–281, arXiv: 1209.4617 | DOI | MR | Zbl
[5] Canakci I., Tumarkin P., “Bases for cluster algebras from orbifolds with one marked point”, Algebr. Comb., 2 (2019), 355–365, arXiv: 1711.00446 | DOI | MR | Zbl
[6] Chekhov L., “Orbifold Riemann surfaces and geodesic algebras”, J. Phys. A: Math. Theor., 42 (2009), 304007, 32 pp., arXiv: 0911.0214 | DOI | MR | Zbl
[7] Chekhov L., Mazzocco M., “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226 (2011), 4731–4775, arXiv: 0909.5350 | DOI | MR | Zbl
[8] Chekhov L., Shapiro M., “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not., 2014 (2014), 2746–2772, arXiv: 1111.3963 | DOI | MR | Zbl
[9] Efimov A. I., Quantum cluster variables via vanishing cycles, arXiv: 1112.3601
[10] Felikson A., Shapiro M., Tumarkin P., “Cluster algebras and triangulated orbifolds”, Adv. Math., 231 (2012), 2953–3002, arXiv: 1111.3449 | DOI | MR | Zbl
[11] Felikson A., Shapiro M., Tumarkin P., “Cluster algebras of finite mutation type via unfoldings”, Int. Math. Res. Not., 2012 (2012), 1768–1804, arXiv: 1006.4276 | DOI | MR | Zbl
[12] Felikson A., Tumarkin P., “Bases for cluster algebras from orbifolds”, Adv. Math., 318 (2017), 191–232, arXiv: 1511.08023 | DOI | MR | Zbl
[13] Fock V. V., Goncharov A. B., “Dual Teichmüller and lamination spaces”, Handbook of Teichmüller Theory, v. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 647–684, arXiv: math.DG/0510312 | DOI | MR | Zbl
[14] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl
[15] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I Cluster complexes”, Acta Math., 201 (2008), 83–146, arXiv: math.RA/0608367 | DOI | MR | Zbl
[16] Fomin S., Thurston D., Cluster algebras and triangulated surfaces, v. II, Mem. Amer. Math. Soc., 255, Lambda lengths, 2018, v+97 pp., arXiv: 1210.5569 | DOI | MR
[17] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[18] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. in Appl. Math., 28 (2002), 119–144, arXiv: math.CO/0104241 | DOI | MR | Zbl
[19] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl
[20] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0208229 | DOI | MR | Zbl
[21] Gleitz A. S., Musiker G., Private communication
[22] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl
[23] Gunawan E., Musiker G., “$T$-path formula and atomic bases for cluster algebras of type $D$”, SIGMA, 11 (2015), 060, 46 pp., arXiv: 1409.3610 | DOI | MR | Zbl
[24] Holm T., Jørgensen P., “A $p$-angulated generalisation of Conway and Coxeter's theorem on frieze patterns”, Int. Math. Res. Not., 2020 (2020), 71–90, arXiv: 1709.09861 | DOI | MR
[25] Kimura Y., Qin F., “Graded quiver varieties, quantum cluster algebras and dual canonical basis”, Adv. Math., 262 (2014), 261–312, arXiv: 1205.2066 | DOI | MR | Zbl
[26] Labardini-Fragoso D., Velasco D., “On a family of Caldero–Chapoton algebras that have the Laurent phenomenon”, J. Algebra, 520 (2019), 90–135, arXiv: 1704.07921 | DOI | MR | Zbl
[27] Lang W., The field $\mathbb{Q}(2\cos(\pi/n))$, its Galois group and length ratios in the regular $n$-gon, arXiv: 1210.1018
[28] Lee K., Schiffler R., “Positivity for cluster algebras”, Ann. of Math., 182 (2015), 73–125, arXiv: 1306.2415 | DOI | MR | Zbl
[29] Musiker G., Schiffler R., “Cluster expansion formulas and perfect matchings”, J. Algebraic Combin., 32 (2010), 187–209, arXiv: 0810.3638 | DOI | MR | Zbl
[30] Musiker G., Schiffler R., Williams L., “Positivity for cluster algebras from surfaces”, Adv. Math., 227 (2011), 2241–2308, arXiv: 0906.0748 | DOI | MR | Zbl
[31] Musiker G., Schiffler R., Williams L., “Bases for cluster algebras from surfaces”, Compos. Math., 149 (2013), 217–263, arXiv: 1110.4364 | DOI | MR | Zbl
[32] Musiker G., Williams L., “Matrix formulae and skein relations for cluster algebras from surfaces”, Int. Math. Res. Not., 2013 (2013), 2891–2944, arXiv: 1108.3382 | DOI | MR | Zbl
[33] Nakajima H., “Quiver varieties and cluster algebras”, Kyoto J. Math., 51 (2011), 71–126, arXiv: 0905.0002 | DOI | MR | Zbl
[34] Nakanishi T., “Structure of seeds in generalized cluster algebras”, Pacific J. Math., 277 (2015), 201–217, arXiv: 1409.5967 | DOI | MR
[35] Nakanishi T., Rupel D., “Companion cluster algebras to a generalized cluster algebra”, Trav. Math., 24 (2016), 129–149, Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg, arXiv: 1504.06758 | MR
[36] Nakanishi T., Zelevinsky A., “On tropical dualities in cluster algebras”, Algebraic Groups and Quantum Groups, Contemp. Math., 565, Amer. Math. Soc., Providence, RI, 2012, 217–226, arXiv: 1101.3736 | DOI | MR | Zbl
[37] Paquette C., Schiffler R., “Group actions on cluster algebras and cluster categories”, Adv. Math., 345 (2019), 161–221, arXiv: 1703.06174 | DOI | MR | Zbl
[38] Propp J., Lattice structure for orientations of graphs, arXiv: math.CO/0209005
[39] Qin F., “Quantum cluster variables via Serre polynomials”, J. Reine Angew. Math., 668 (2012), 149–190, arXiv: 1004.4171 | DOI | MR | Zbl
[40] Satake I., “On a generalization of the notion of manifold”, Proc. Nat. Acad. Sci. USA, 42 (1956), 359–363 | DOI | MR | Zbl
[41] Schiffler R., “On cluster algebras arising from unpunctured surfaces. II”, Adv. Math., 223 (2010), 1885–1923, arXiv: 0809.2593 | DOI | MR | Zbl
[42] Schiffler R., Thomas H., “On cluster algebras arising from unpunctured surfaces”, Int. Math. Res. Not., 2009 (2009), 3160–3189, arXiv: 0712.4131 | DOI | MR | Zbl
[43] Thurston W. P., “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417–431 | DOI | MR | Zbl
[44] Thurston W. P., Three-dimensional geometry and topology, v. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl