Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce the notion of a (regular) Hom-Lie group. We associate a Hom-Lie algebra to a Hom-Lie group and show that every regular Hom-Lie algebra is integrable. Then, we define a Hom-exponential ($\mathsf{Hexp}$) map from the Hom-Lie algebra of a Hom-Lie group to the Hom-Lie group and discuss the universality of this $\mathsf{Hexp}$ map. We also describe a Hom-Lie group action on a smooth manifold. Subsequently, we give the notion of an adjoint representation of a Hom-Lie group on its Hom-Lie algebra. At last, we integrate the Hom-Lie algebra $(\mathfrak{gl}(V),[\cdot,\cdot],\mathsf{Ad})$, and the derivation Hom-Lie algebra of a Hom-Lie algebra.
Keywords: Hom-Lie algebra, derivation, integration.
Mots-clés : Hom-Lie group, automorphism
@article{SIGMA_2020_16_a136,
     author = {Jun Jiang and Satyendra Kumar Mishra and Yunhe Sheng},
     title = {Hom-Lie {Algebras} and {Hom-Lie} {Groups,} {Integration} and {Differentiation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a136/}
}
TY  - JOUR
AU  - Jun Jiang
AU  - Satyendra Kumar Mishra
AU  - Yunhe Sheng
TI  - Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a136/
LA  - en
ID  - SIGMA_2020_16_a136
ER  - 
%0 Journal Article
%A Jun Jiang
%A Satyendra Kumar Mishra
%A Yunhe Sheng
%T Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a136/
%G en
%F SIGMA_2020_16_a136
Jun Jiang; Satyendra Kumar Mishra; Yunhe Sheng. Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a136/

[1] Ammar F., Ejbehi Z., Makhlouf A., “Cohomology and deformations of Hom-algebras”, J. Lie Theory, 21 (2011), 813–836, arXiv: 1005.0456 | MR | Zbl

[2] Bohm G., Vercruysse J., BiHom Hopf algebras viewed as Hopf monoids, arXiv: 2003.08819

[3] Caenepeel S., Goyvaerts I., “Monoidal Hom-Hopf algebras”, Comm. Algebra, 39 (2011), 2216–2240, arXiv: 0907.0187 | DOI | MR | Zbl

[4] Cai L., Liu J., Sheng Y., “Hom-Lie algebroids, Hom-Lie bialgebroids and Hom-Courant algebroids”, J. Geom. Phys., 121 (2017), 15–32, arXiv: 1605.04752 | DOI | MR | Zbl

[5] Cai L., Sheng Y., “Hom-big brackets: theory and applications”, SIGMA, 12 (2016), 014, 18 pp., arXiv: 1507.04061 | DOI | MR | Zbl

[6] Hartwig J. T., Larsson D., Silvestrov S. D., “Deformations of Lie algebras using $\sigma$-derivations”, J. Algebra, 295 (2006), 314–361, arXiv: math.QA/0408064 | DOI | MR | Zbl

[7] Hassanzadeh M., “Hom-groups, representations and homological algebra”, Colloq. Math., 158 (2019), 21–38, arXiv: 1801.07398 | DOI | MR | Zbl

[8] Hassanzadeh M., “Lagrange's theorem for Hom-groups”, Rocky Mountain J. Math., 49 (2019), 773–787, arXiv: 1803.07678 | DOI | MR | Zbl

[9] Hu N., “$q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations”, Algebra Colloq., 6 (1999), 51–70, arXiv: math.QA/0512526 | MR | Zbl

[10] Larsson D., Silvestrov S. D., “Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities”, J. Algebra, 288 (2005), 321–344, arXiv: math.RA/0408061 | DOI | MR | Zbl

[11] Larsson D., Silvestrov S. D., “Quasi-Lie algebras”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 241–248 | DOI | MR | Zbl

[12] Larsson D., Silvestrov S. D., “Quasi-deformations of ${\mathfrak{sl}}_2({\mathbb F})$ using twisted derivations”, Comm. Algebra, 35 (2007), 4303–4318, arXiv: math.RA/0506172 | DOI | MR | Zbl

[13] Laurent-Gengoux C., Makhlouf A., Teles J., “Universal algebra of a Hom-Lie algebra and group-like elements”, J. Pure Appl. Algebra, 222 (2018), 1139–1163, arXiv: 1505.02439 | DOI | MR | Zbl

[14] Laurent-Gengoux C., Teles J., “Hom-Lie algebroids”, J. Geom. Phys., 68 (2013), 69–75, arXiv: 1211.2263 | DOI | MR | Zbl

[15] Makhlouf A., Silvestrov S., “Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras”, Forum Math., 22 (2010), 715–739, arXiv: 0712.3130 | DOI | MR | Zbl

[16] Mandal A., Mishra S. K., “Hom-Lie–Rinehart algebras”, Comm. Algebra, 46 (2018), 3722–3744, arXiv: 1610.01477 | DOI | MR | Zbl

[17] Sheng Y., “Representations of hom-Lie algebras”, Algebr. Represent. Theory, 15 (2012), 1081–1098, arXiv: 1005.0140 | DOI | MR | Zbl

[18] Sheng Y., Chen D., “Hom-Lie 2-algebras”, J. Algebra, 376 (2013), 174–195, arXiv: 1110.3405 | DOI | MR | Zbl

[19] Sheng Y., Xiong Z., “On Hom-Lie algebras”, Linear Multilinear Algebra, 63 (2015), 2379–2395, arXiv: 1411.6839 | DOI | MR | Zbl

[20] Yau D., “Enveloping algebras of Hom-Lie algebras”, J. Gen. Lie Theory Appl., 2 (2008), 95–108, arXiv: 0709.0849 | DOI | MR | Zbl

[21] Yau D., “Hom-quantum groups: I Quasi-triangular Hom-bialgebras”, J. Phys. A: Math. Theor., 45 (2012), 065203, 23 pp., arXiv: 0906.4128 | DOI | MR | Zbl