Mots-clés : Hom-Lie group, automorphism
@article{SIGMA_2020_16_a136,
author = {Jun Jiang and Satyendra Kumar Mishra and Yunhe Sheng},
title = {Hom-Lie {Algebras} and {Hom-Lie} {Groups,} {Integration} and {Differentiation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a136/}
}
TY - JOUR AU - Jun Jiang AU - Satyendra Kumar Mishra AU - Yunhe Sheng TI - Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a136/ LA - en ID - SIGMA_2020_16_a136 ER -
%0 Journal Article %A Jun Jiang %A Satyendra Kumar Mishra %A Yunhe Sheng %T Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a136/ %G en %F SIGMA_2020_16_a136
Jun Jiang; Satyendra Kumar Mishra; Yunhe Sheng. Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a136/
[1] Ammar F., Ejbehi Z., Makhlouf A., “Cohomology and deformations of Hom-algebras”, J. Lie Theory, 21 (2011), 813–836, arXiv: 1005.0456 | MR | Zbl
[2] Bohm G., Vercruysse J., BiHom Hopf algebras viewed as Hopf monoids, arXiv: 2003.08819
[3] Caenepeel S., Goyvaerts I., “Monoidal Hom-Hopf algebras”, Comm. Algebra, 39 (2011), 2216–2240, arXiv: 0907.0187 | DOI | MR | Zbl
[4] Cai L., Liu J., Sheng Y., “Hom-Lie algebroids, Hom-Lie bialgebroids and Hom-Courant algebroids”, J. Geom. Phys., 121 (2017), 15–32, arXiv: 1605.04752 | DOI | MR | Zbl
[5] Cai L., Sheng Y., “Hom-big brackets: theory and applications”, SIGMA, 12 (2016), 014, 18 pp., arXiv: 1507.04061 | DOI | MR | Zbl
[6] Hartwig J. T., Larsson D., Silvestrov S. D., “Deformations of Lie algebras using $\sigma$-derivations”, J. Algebra, 295 (2006), 314–361, arXiv: math.QA/0408064 | DOI | MR | Zbl
[7] Hassanzadeh M., “Hom-groups, representations and homological algebra”, Colloq. Math., 158 (2019), 21–38, arXiv: 1801.07398 | DOI | MR | Zbl
[8] Hassanzadeh M., “Lagrange's theorem for Hom-groups”, Rocky Mountain J. Math., 49 (2019), 773–787, arXiv: 1803.07678 | DOI | MR | Zbl
[9] Hu N., “$q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations”, Algebra Colloq., 6 (1999), 51–70, arXiv: math.QA/0512526 | MR | Zbl
[10] Larsson D., Silvestrov S. D., “Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities”, J. Algebra, 288 (2005), 321–344, arXiv: math.RA/0408061 | DOI | MR | Zbl
[11] Larsson D., Silvestrov S. D., “Quasi-Lie algebras”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 241–248 | DOI | MR | Zbl
[12] Larsson D., Silvestrov S. D., “Quasi-deformations of ${\mathfrak{sl}}_2({\mathbb F})$ using twisted derivations”, Comm. Algebra, 35 (2007), 4303–4318, arXiv: math.RA/0506172 | DOI | MR | Zbl
[13] Laurent-Gengoux C., Makhlouf A., Teles J., “Universal algebra of a Hom-Lie algebra and group-like elements”, J. Pure Appl. Algebra, 222 (2018), 1139–1163, arXiv: 1505.02439 | DOI | MR | Zbl
[14] Laurent-Gengoux C., Teles J., “Hom-Lie algebroids”, J. Geom. Phys., 68 (2013), 69–75, arXiv: 1211.2263 | DOI | MR | Zbl
[15] Makhlouf A., Silvestrov S., “Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras”, Forum Math., 22 (2010), 715–739, arXiv: 0712.3130 | DOI | MR | Zbl
[16] Mandal A., Mishra S. K., “Hom-Lie–Rinehart algebras”, Comm. Algebra, 46 (2018), 3722–3744, arXiv: 1610.01477 | DOI | MR | Zbl
[17] Sheng Y., “Representations of hom-Lie algebras”, Algebr. Represent. Theory, 15 (2012), 1081–1098, arXiv: 1005.0140 | DOI | MR | Zbl
[18] Sheng Y., Chen D., “Hom-Lie 2-algebras”, J. Algebra, 376 (2013), 174–195, arXiv: 1110.3405 | DOI | MR | Zbl
[19] Sheng Y., Xiong Z., “On Hom-Lie algebras”, Linear Multilinear Algebra, 63 (2015), 2379–2395, arXiv: 1411.6839 | DOI | MR | Zbl
[20] Yau D., “Enveloping algebras of Hom-Lie algebras”, J. Gen. Lie Theory Appl., 2 (2008), 95–108, arXiv: 0709.0849 | DOI | MR | Zbl
[21] Yau D., “Hom-quantum groups: I Quasi-triangular Hom-bialgebras”, J. Phys. A: Math. Theor., 45 (2012), 065203, 23 pp., arXiv: 0906.4128 | DOI | MR | Zbl