On the $2$-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use recent developments by Gromov and Zhu to derive an upper bound for the $2$-systole of the homology class of $\mathbb{S}^2\times\{\ast\}$ in a $\mathbb{S}^2\times\mathbb{S}^2$ with a positive scalar curvature metric such that the set of surfaces homologous to $\mathbb{S}^2\times\{\ast\}$ is wide enough in some sense.
Keywords: scalar curvature, higher systoles, geometric inequalities.
@article{SIGMA_2020_16_a135,
     author = {Thomas Richard},
     title = {On the $2${-Systole} of {Stretched} {Enough} {Positive} {Scalar} {Curvature} {Metrics} on $\mathbb{S}^2\times\mathbb{S}^2$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a135/}
}
TY  - JOUR
AU  - Thomas Richard
TI  - On the $2$-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a135/
LA  - en
ID  - SIGMA_2020_16_a135
ER  - 
%0 Journal Article
%A Thomas Richard
%T On the $2$-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a135/
%G en
%F SIGMA_2020_16_a135
Thomas Richard. On the $2$-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a135/

[1] Berger M., “Systoles et applications selon Gromov”, Astérisque, 216, no. 771, 1993, 279–310 | MR | Zbl

[2] Bott R., Tu L.W., Differential forms in algebraic topology, Graduate Texts in Mathematics, 82, Springer-Verlag, New York – Berlin, 1982 | DOI | MR | Zbl

[3] Bray H., Brendle S., Neves A., “Rigidity of area-minimizing two-spheres in three-manifolds”, Comm. Anal. Geom., 18 (2010), 821–830, arXiv: 1002.2814 | DOI | MR | Zbl

[4] Gromov M., “Metric inequalities with scalar curvature”, Geom. Funct. Anal., 28 (2018), 645–726, arXiv: 1710.04655 | DOI | MR | Zbl

[5] Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612

[6] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 58, 1983, 83–196 | DOI | MR | Zbl

[7] Hatcher A., Vector bundles and K-theory, http://pi.math.cornell.edu/h̃atcher/

[8] Katz M. G., Suciu A. I., “Volume of Riemannian manifolds, geometric inequalities, and homotopy theory”, Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Contemp. Math., 231, Amer. Math. Soc., Providence, RI, 1999, 113–136, arXiv: math.DG/9810172 | DOI | MR | Zbl

[9] Zhu J., “Rigidity of area-minimizing $2$-spheres in $n$-manifolds with positive scalar curvature”, Proc. Amer. Math. Soc., 148 (2020), 3479–3489, arXiv: 1903.05785 | DOI | MR | Zbl