@article{SIGMA_2020_16_a134,
author = {Bjorn K. Berntson and Ernest G. Kalnins and Willard Miller Jr.},
title = {Toward {Classification} of 2nd {Order} {Superintegrable} {Systems} in {3-Dimensional} {Conformally} {Flat} {Spaces} with {Functionally} {Linearly} {Dependent} {Symmetry} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a134/}
}
TY - JOUR AU - Bjorn K. Berntson AU - Ernest G. Kalnins AU - Willard Miller Jr. TI - Toward Classification of 2nd Order Superintegrable Systems in 3-Dimensional Conformally Flat Spaces with Functionally Linearly Dependent Symmetry Operators JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a134/ LA - en ID - SIGMA_2020_16_a134 ER -
%0 Journal Article %A Bjorn K. Berntson %A Ernest G. Kalnins %A Willard Miller Jr. %T Toward Classification of 2nd Order Superintegrable Systems in 3-Dimensional Conformally Flat Spaces with Functionally Linearly Dependent Symmetry Operators %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a134/ %G en %F SIGMA_2020_16_a134
Bjorn K. Berntson; Ernest G. Kalnins; Willard Miller Jr. Toward Classification of 2nd Order Superintegrable Systems in 3-Dimensional Conformally Flat Spaces with Functionally Linearly Dependent Symmetry Operators. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a134/
[1] Benenti S., Chanu C., Rastelli G., “The super-separability of the three-body inverse-square Calogero system”, J. Math. Phys., 41 (2000), 4654–4678 | DOI | MR | Zbl
[2] Berntson B. K., Kalnins E. G., Miller Jr. W., Nonexistence of Calogero-like 2nd order superintegrable systems on the complex 3-sphere, https://www-users.math.umn.edu/m̃ille003/FLDpaperArk_e.pdf
[3] Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894
[4] Calogero F., “Solution of a three-body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 | DOI
[5] Calogero F. Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[6] Capel J. J., Kress J. M., Invariant classification of second-order conformally flat superintegrable systems, J. Phys. A: Math. Theor., 47 (2014), 495202, 33 pp., arXiv: 1406.3136 | DOI | MR | Zbl
[7] Escobar-Ruiz M. A., Miller Jr. W., “Toward a classification of semidegenerate 3D superintegrable systems”, J. Phys. A: Math. Theor., 50 (2017), 095203, 22 pp., arXiv: 1611.02977 | DOI | MR | Zbl
[8] Evans N. W. Superintegrability in classical mechanics, Phys. Rev. A, 41 (1990), 5666–5676 | DOI | MR
[9] Kalnins E. G., Kress J. M., Miller Jr. W., “Second-order superintegrable systems in conformally flat spaces. I Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp. | DOI | MR | Zbl
[10] Kalnins E. G., Kress J. M., Miller Jr. W., “Second order superintegrable systems in conformally flat spaces. III Three-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 103507, 28 pp. | DOI | MR | Zbl
[11] Kalnins E. G., Kress J. M., Miller Jr. W., “Second-order superintegrable systems in conformally flat spaces. V Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR | Zbl
[12] Kalnins E. G., Kress J. M., Miller Jr. W., “Fine structure for 3D second-order superintegrable systems: three-parameter potentials”, J. Phys. A: Math. Theor., 40 (2007), 5875–5892 | DOI | MR | Zbl
[13] Kalnins E. G., Kress J. M., Miller Jr. W. Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties, J. Math. Phys., 48 (2007), 113518, 26 pp., arXiv: 0708.3044 | DOI | MR | Zbl
[14] Kalnins E. G., Kress J. M., Miller Jr. W., Separation of variables and superintegrability: the symmetry of solvable systems, IOP Expanding Physics, IOP Publishing, Bristol, 2018 | DOI | MR | Zbl
[15] Koenigs G. X. P., “Sur les géodésiques a integrales quadratiques”, Leçons sur la théorie générale des surfaces, v. 4, ed. J.G. Darboux, Chelsea Publishing, 1972, 368–404 | MR
[16] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl
[17] Rañada M. F., “Superintegrability of the Calogero–Moser system: constants of motion, master symmetries, and time-dependent symmetries”, J. Math. Phys., 40 (1999), 236–247 | DOI | MR | Zbl
[18] Rauch-Wojciechowski S., Waksjö C., “What an effective criterion of separability says about the Calogero type systems”, J. Nonlinear Math. Phys., 12:1 (2005), 535–547 | DOI | MR | Zbl
[19] Smirnov R. G., Winternitz P., “A class of superintegrable systems of Calogero type”, J. Math. Phys., 48 (2006), 093505, 8 pp., arXiv: math-ph/0606006 | DOI | MR
[20] Wojciechowski S., “Superintegrability of the Calogero–Moser system”, Phys. Lett. A, 95 (1983), 279–281 | DOI | MR