Knot Complement, ADO Invariants and their Deformations for Torus Knots
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relation between the two-variable series knot invariant and the Akutsu–Deguchi–Ohtsuki (ADO) invariant was conjectured recently. We reinforce the conjecture by presenting explicit formulas and/or an algorithm for particular ADO invariants of torus knots obtained from the series invariant of complement of a knot. Furthermore, one parameter deformation of ADO$_3$ polynomial of torus knots is provided.
Keywords: torus knots, knot complement, quantum invariant, $q$-series, ADO Polynomials, Chern–Simons theory, categorification.
@article{SIGMA_2020_16_a133,
     author = {John Chae},
     title = {Knot {Complement,} {ADO} {Invariants} and their {Deformations} for {Torus} {Knots}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a133/}
}
TY  - JOUR
AU  - John Chae
TI  - Knot Complement, ADO Invariants and their Deformations for Torus Knots
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a133/
LA  - en
ID  - SIGMA_2020_16_a133
ER  - 
%0 Journal Article
%A John Chae
%T Knot Complement, ADO Invariants and their Deformations for Torus Knots
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a133/
%G en
%F SIGMA_2020_16_a133
John Chae. Knot Complement, ADO Invariants and their Deformations for Torus Knots. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a133/

[1] Akutsu Y., Deguchi T., Ohtsuki T., “Invariants of colored links”, J. Knot Theory Ramifications, 1 (1992), 161–184 | DOI | MR | Zbl

[2] Bar-Natan D., Garoufalidis S., “On the Melvin–Morton–Rozansky conjecture”, Invent. Math., 125 (1996), 103–133 | DOI | MR | Zbl

[3] Brown J., Dimofte T., Garoufalidis S., Geer N., The ADO invariants are a $q$-holonomic family, arXiv: 2005.08176

[4] Dunfield N. M., Gukov S., Rasmussen J., “The superpolynomial for knot homologies”, Experiment. Math., 15 (2006), 129–159, arXiv: math.GT/0505662 | DOI | MR | Zbl

[5] Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sułkowski P., $\hat{Z}$ at large $N$: from curve counts to quantum modularity, arXiv: 2005.13349

[6] Elliot R., Gukov S., “Exceptional knot homology”, J. Knot Theory Ramifications, 25 (2016), 1640003, 49 pp., arXiv: 1505.01635 | DOI | MR | Zbl

[7] Fuji H., Gukov S., Stosic M., Sułkowski P., “3d analogs of Argyres–Douglas theories and knot homologies”, J. High Energy Phys., 2013:1 (2013), 175, 38 pp., arXiv: 1209.1416 | DOI | MR

[8] Garoufalidis S., “On the characteristic and deformation varieties of a knot”, Proceedings of the Casson Fest, Geom. Topol. Monogr., 7, Geom. Topol. Publ., Coventry, 2004, 291–309, arXiv: math.GT/0306230 | DOI | MR | Zbl

[9] Gukov S., “Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial”, Comm. Math. Phys., 255 (2005), 577–627, arXiv: hep-th/0306165 | DOI | MR | Zbl

[10] Gukov S., “Gauge theory and knot homologies”, Fortschr. Phys., 55 (2007), 473–490 | DOI | MR | Zbl

[11] Gukov S., Hsin P.-S., Nakajima H., Park S., Pei D., Sopenko N., Rozansky–Witten geometry of Coulomb branches and logarithmic knot invariants, arXiv: 2005.05347

[12] Gukov S., Manolescu C., A two-variable series for knot complements, arXiv: 1904.06057

[13] Gukov S., Pei D., Putrov P., Vafa C., “BPS spectra and 3-manifold invariants”, J. Knot Theory Ramifications, 29 (2020), 2040003, 85 pp., arXiv: 1701.06567 | DOI | MR | Zbl

[14] Gukov S., Putrov P., Vafa C., “Fivebranes and 3-manifold homology”, J. High Energy Phys., 2017:7 (2017), 071, 81 pp., arXiv: 1602.05302 | DOI | MR

[15] Gukov S., Schwarz A., Vafa C., “Khovanov–Rozansky homology and topological strings”, Lett. Math. Phys., 74 (2005), 53–74, arXiv: hep-th/0412243 | DOI | MR | Zbl

[16] Gukov S., Walcher J., Matrix factorizations and Kauffman homology, arXiv: hep-th/0512298

[17] Khovanov M., “A categorification of the Jones polynomial”, Duke Math. J., 101 (2000), 359–426, arXiv: math.QA/9908171 | DOI | MR | Zbl

[18] Khovanov M., Rozansky L., “Matrix factorizations and link homology”, Fund. Math., 199 (2008), 1–91, arXiv: math.QA/0401268 | DOI | MR | Zbl

[19] Khovanov M., Rozansky L., “Matrix factorizations and link homology. II”, Geom. Topol., 12 (2008), 1387–1425, arXiv: math.QA/0505056 | DOI | MR | Zbl

[20] Kucharski P., Quivers for 3-manifolds: the correspondence, BPS states, and 3d ${\mathcal N}=2$ theories, arXiv: 2005.13394

[21] Melvin P. M., Morton H. R., “The coloured Jones function”, Comm. Math. Phys., 169 (1995), 501–520 | DOI | MR | Zbl

[22] Nawata S., Oblomkov A., “Lectures on knot homology”, Physics and Mathematics of Link Homology, Contemp. Math., 680, Amer. Math. Soc., Providence, RI, 2016, 137–177, arXiv: 1510.01795 | DOI | MR

[23] Ozsváth P., Szabó Z., “Holomorphic disks and knot invariants”, Adv. Math., 186 (2004), 58–116, arXiv: math.GT/0209056 | DOI | MR | Zbl

[24] Park S., Large color $R$-matrix for knot complements and strange identities, arXiv: 2004.02087

[25] Park S., “Higher rank $\hat{Z}$ and $F_K$”, SIGMA, 16 (2020), 044, 17 pp., arXiv: 1909.13002 | DOI | MR | Zbl

[26] Rasmussen J., Floer homology and knot complements, arXiv: math.GT/0306378 | MR

[27] Reshetikhin N., Turaev V., “Ribbon graphs and their invariants derived from quantum groups”, Comm. Math. Phys., 127 (1990), 1–26 | DOI | MR | Zbl

[28] Reshetikhin N., Turaev V., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl

[29] Rozansky L., “Higher order terms in the Melvin–Morton expansion of the colored Jones polynomial”, Comm. Math. Phys., 183 (1997), 291–306, arXiv: q-alg/9601009 | DOI | MR | Zbl

[30] Webster B., “An introduction to categorifying quantum knot invariants”, Proceedings of the Freedman Fest, Geom. Topol. Monogr., 18, Geom. Topol. Publ., Coventry, 2012, 253–289 | DOI | MR | Zbl

[31] Willetts S., A unification of the ADO and colored Jones polynomials of a knot, arXiv: 2003.09854 | MR

[32] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl

[33] Witten E., “Fivebranes and knots”, Quantum Topol., 3 (2012), 1–137, arXiv: 1101.3216 | DOI | MR | Zbl