@article{SIGMA_2020_16_a131,
author = {Kang Lu},
title = {Perfect {Integrability} and {Gaudin} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a131/}
}
Kang Lu. Perfect Integrability and Gaudin Models. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a131/
[1] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass. – London – Don Mills, Ont., 1969 | MR | Zbl
[2] Chernyak D., Leurent S., Volin D., Completeness of Wronskian Bethe equations for rational $\mathfrak{gl}(m|n)$ spin chain, arXiv: 2004.02865
[3] Feigin B., Frenkel E., Reshetikhin N., “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166 (1994), 27–62, arXiv: hep-th/9402022 | DOI | MR | Zbl
[4] Feigin B., Frenkel E., Rybnikov L., “Opers with irregular singularity and spectra of the shift of argument subalgebra”, Duke Math. J., 155 (2010), 337–363, arXiv: 0712.1183 | DOI | MR | Zbl
[5] Feigin B., Frenkel E., Toledano Laredo V., “Gaudin models with irregular singularities”, Adv. Math., 223 (2010), 873–948, arXiv: math.QA/0612798 | DOI | MR | Zbl
[6] Frenkel E., Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, 103, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[7] Ilin A., Rybnikov L., On classical limits of Bethe subalgebras in Yangians, arXiv: 2009.06934
[8] Lu K., “Lower bounds for numbers of real self-dual spaces in problems of Schubert calculus”, SIGMA, 14 (2018), 046, 15 pp., arXiv: 1710.06534 | DOI | MR | Zbl
[9] Lu K., Mukhin E., “On the Gaudin model of type $\rm G_2$”, Commun. Contemp. Math., 21 (2019), 1850012, 31 pp., arXiv: 1711.02511 | DOI | MR | Zbl
[10] Lu K., Mukhin E., On the supersymmetric XXX spin chains associated to $\mathfrak{gl}_{1|1}$, arXiv: 1910.13360
[11] Lu K., Mukhin E., Varchenko A., “Self-dual Grassmannian, Wronski map, and representations of $\mathfrak{gl}_N$, $\mathfrak{sp}_{2r}$, $\mathfrak{so}_{2r+1}$”, Pure Appl. Math. Q., 13 (2017), 291–335, arXiv: 1705.02048 | DOI | MR | Zbl
[12] Molev A. I., “Feigin–Frenkel center in types $B$, $C$ and $D$”, Invent. Math., 191 (2013), 1–34, arXiv: 1105.2341 | DOI | MR | Zbl
[13] Mukhin E., Tarasov V., “Lower bounds for numbers of real solutions in problems of Schubert calculus”, Acta Math., 217 (2016), 177–193, arXiv: 1404.7194 | DOI | MR | Zbl
[14] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 2006 (2006), P08002, 44 pp., arXiv: math.QA/0605015 | DOI | MR | Zbl
[15] Mukhin E., Tarasov V., Varchenko A., “Spaces of quasi-exponentials and representations of $\mathfrak{gl}_N$”, J. Phys. A: Math. Theor., 41 (2008), 194017, 28 pp., arXiv: 0801.3120 | DOI | MR | Zbl
[16] Mukhin E., Tarasov V., Varchenko A., “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22 (2009), 909–940, arXiv: 0711.4079 | DOI | MR | Zbl
[17] Mukhin E., Tarasov V., Varchenko A., “Spaces of quasi-exponentials and representations of the Yangian $Y(\mathfrak{gl}_N)$”, Transform. Groups, 19 (2014), 861–885, arXiv: 1303.1578 | DOI | MR | Zbl
[18] Rimányi R., Tarasov V., Varchenko A., “Trigonometric weight functions as $K$-theoretic stable envelope maps for the cotangent bundle of a flag variety”, J. Geom. Phys., 94 (2015), 81–119, arXiv: 1411.0478 | DOI | MR | Zbl
[19] Rybnikov L., “The argument shift method and the Gaudin model”, Funct. Anal. Appl., 40 (2006), 188–199, arXiv: math.RT/0606380 | DOI | MR | Zbl
[20] Rybnikov L., “Uniqueness of higher Gaudin Hamiltonians”, Rep. Math. Phys., 61 (2008), 247–252, arXiv: math.QA/0608588 | DOI | MR
[21] Rybnikov L., “Proof of the Gaudin Bethe ansatz conjecture”, Int. Math. Res. Not., 2020 (2020), 8766–8785, arXiv: 1608.04625 | DOI