Perfect Integrability and Gaudin Models
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with periodic and regular quasi-periodic boundary conditions.
Keywords: Gaudin model, Bethe ansatz, Frobenius algebra.
@article{SIGMA_2020_16_a131,
     author = {Kang Lu},
     title = {Perfect {Integrability} and {Gaudin} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a131/}
}
TY  - JOUR
AU  - Kang Lu
TI  - Perfect Integrability and Gaudin Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a131/
LA  - en
ID  - SIGMA_2020_16_a131
ER  - 
%0 Journal Article
%A Kang Lu
%T Perfect Integrability and Gaudin Models
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a131/
%G en
%F SIGMA_2020_16_a131
Kang Lu. Perfect Integrability and Gaudin Models. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a131/

[1] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass. – London – Don Mills, Ont., 1969 | MR | Zbl

[2] Chernyak D., Leurent S., Volin D., Completeness of Wronskian Bethe equations for rational $\mathfrak{gl}(m|n)$ spin chain, arXiv: 2004.02865

[3] Feigin B., Frenkel E., Reshetikhin N., “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166 (1994), 27–62, arXiv: hep-th/9402022 | DOI | MR | Zbl

[4] Feigin B., Frenkel E., Rybnikov L., “Opers with irregular singularity and spectra of the shift of argument subalgebra”, Duke Math. J., 155 (2010), 337–363, arXiv: 0712.1183 | DOI | MR | Zbl

[5] Feigin B., Frenkel E., Toledano Laredo V., “Gaudin models with irregular singularities”, Adv. Math., 223 (2010), 873–948, arXiv: math.QA/0612798 | DOI | MR | Zbl

[6] Frenkel E., Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, 103, Cambridge University Press, Cambridge, 2007 | MR | Zbl

[7] Ilin A., Rybnikov L., On classical limits of Bethe subalgebras in Yangians, arXiv: 2009.06934

[8] Lu K., “Lower bounds for numbers of real self-dual spaces in problems of Schubert calculus”, SIGMA, 14 (2018), 046, 15 pp., arXiv: 1710.06534 | DOI | MR | Zbl

[9] Lu K., Mukhin E., “On the Gaudin model of type $\rm G_2$”, Commun. Contemp. Math., 21 (2019), 1850012, 31 pp., arXiv: 1711.02511 | DOI | MR | Zbl

[10] Lu K., Mukhin E., On the supersymmetric XXX spin chains associated to $\mathfrak{gl}_{1|1}$, arXiv: 1910.13360

[11] Lu K., Mukhin E., Varchenko A., “Self-dual Grassmannian, Wronski map, and representations of $\mathfrak{gl}_N$, $\mathfrak{sp}_{2r}$, $\mathfrak{so}_{2r+1}$”, Pure Appl. Math. Q., 13 (2017), 291–335, arXiv: 1705.02048 | DOI | MR | Zbl

[12] Molev A. I., “Feigin–Frenkel center in types $B$, $C$ and $D$”, Invent. Math., 191 (2013), 1–34, arXiv: 1105.2341 | DOI | MR | Zbl

[13] Mukhin E., Tarasov V., “Lower bounds for numbers of real solutions in problems of Schubert calculus”, Acta Math., 217 (2016), 177–193, arXiv: 1404.7194 | DOI | MR | Zbl

[14] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 2006 (2006), P08002, 44 pp., arXiv: math.QA/0605015 | DOI | MR | Zbl

[15] Mukhin E., Tarasov V., Varchenko A., “Spaces of quasi-exponentials and representations of $\mathfrak{gl}_N$”, J. Phys. A: Math. Theor., 41 (2008), 194017, 28 pp., arXiv: 0801.3120 | DOI | MR | Zbl

[16] Mukhin E., Tarasov V., Varchenko A., “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22 (2009), 909–940, arXiv: 0711.4079 | DOI | MR | Zbl

[17] Mukhin E., Tarasov V., Varchenko A., “Spaces of quasi-exponentials and representations of the Yangian $Y(\mathfrak{gl}_N)$”, Transform. Groups, 19 (2014), 861–885, arXiv: 1303.1578 | DOI | MR | Zbl

[18] Rimányi R., Tarasov V., Varchenko A., “Trigonometric weight functions as $K$-theoretic stable envelope maps for the cotangent bundle of a flag variety”, J. Geom. Phys., 94 (2015), 81–119, arXiv: 1411.0478 | DOI | MR | Zbl

[19] Rybnikov L., “The argument shift method and the Gaudin model”, Funct. Anal. Appl., 40 (2006), 188–199, arXiv: math.RT/0606380 | DOI | MR | Zbl

[20] Rybnikov L., “Uniqueness of higher Gaudin Hamiltonians”, Rep. Math. Phys., 61 (2008), 247–252, arXiv: math.QA/0608588 | DOI | MR

[21] Rybnikov L., “Proof of the Gaudin Bethe ansatz conjecture”, Int. Math. Res. Not., 2020 (2020), 8766–8785, arXiv: 1608.04625 | DOI