Mots-clés : optimal transport
@article{SIGMA_2020_16_a130,
author = {Annegret Burtscher and Christian Ketterer and Robert J. McCann and Eric Woolgar},
title = {Inscribed {Radius} {Bounds} for {Lower} {Ricci} {Bounded} {Metric} {Measure} {Spaces} with {Mean} {Convex} {Boundary}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a130/}
}
TY - JOUR AU - Annegret Burtscher AU - Christian Ketterer AU - Robert J. McCann AU - Eric Woolgar TI - Inscribed Radius Bounds for Lower Ricci Bounded Metric Measure Spaces with Mean Convex Boundary JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a130/ LA - en ID - SIGMA_2020_16_a130 ER -
%0 Journal Article %A Annegret Burtscher %A Christian Ketterer %A Robert J. McCann %A Eric Woolgar %T Inscribed Radius Bounds for Lower Ricci Bounded Metric Measure Spaces with Mean Convex Boundary %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a130/ %G en %F SIGMA_2020_16_a130
Annegret Burtscher; Christian Ketterer; Robert J. McCann; Eric Woolgar. Inscribed Radius Bounds for Lower Ricci Bounded Metric Measure Spaces with Mean Convex Boundary. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a130/
[1] Ambrosio L., Gigli N., Mondino A., Rajala T., “Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure”, Trans. Amer. Math. Soc., 367 (2015), 4661–4701, arXiv: 1207.4924 | DOI | MR | Zbl
[2] Ambrosio L., Gigli N., Savaré G., “Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces”, Rev. Mat. Iberoam., 29 (2013), 969–996, arXiv: 1111.3730 | DOI | MR | Zbl
[3] Ambrosio L., Gigli N., Savaré G., “Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below”, Invent. Math., 195 (2014), 289–391, arXiv: 1106.2090 | DOI | MR | Zbl
[4] Ambrosio L., Gigli N., Savaré G., “Metric measure spaces with Riemannian Ricci curvature bounded from below”, Duke Math. J., 163 (2014), 1405–1490, arXiv: 1109.0222 | DOI | MR | Zbl
[5] Ambrosio L., Mondino A., Savaré G., Nonlinear diffusion equations and curvature conditions in metric measure spaces, Mem. Amer. Math. Soc., 262, 2019, v+121 pp., arXiv: 1509.07273 | DOI | MR
[6] Björn A., Björn J., Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17, European Mathematical Society (EMS), Zürich, 2011 | DOI | MR | Zbl
[7] Burago D., Burago Y., Ivanov S., A course in metric geometry, Graduate Studies in Mathematics, 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[8] Cavalletti F., “Monge problem in metric measure spaces with Riemannian curvature-dimension condition”, Nonlinear Anal., 99 (2014), 136–151, arXiv: 1310.4036 | DOI | MR | Zbl
[9] Cavalletti F., Milman E., The globalization theorem for the curvature dimension condition, arXiv: 1612.07623
[10] Cavalletti F., Mondino A., “Optimal maps in essentially non-branching spaces”, Commun. Contemp. Math., 19 (2017), 1750007, 27 pp., arXiv: 1609.00782 | DOI | MR | Zbl
[11] Cavalletti F., Mondino A., “Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds”, Invent. Math., 208 (2017), 803–849, arXiv: 1502.06465 | DOI | MR | Zbl
[12] Cavalletti F., Mondino A., “New formulas for the Laplacian of distance functions and applications”, Anal. PDE, 13 (2020), 2091–2147, arXiv: 1803.09687 | DOI | MR
[13] Cavalletti F., Mondino A., Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications, arXiv: 2004.08934
[14] Cheeger J., “Differentiability of Lipschitz functions on metric measure spaces”, Geom. Funct. Anal., 9 (1999), 428–517 | DOI | MR | Zbl
[15] Cheng S. Y., “Eigenvalue comparison theorems and its geometric applications”, Math. Z., 143 (1975), 289–297 | DOI | MR | Zbl
[16] Cushing D., Kamtue S., Koolen J., Liu S., Münch F., Peyerimhoff N., “Rigidity of the Bonnet–Myers inequality for graphs with respect to Ollivier Ricci curvature”, Adv. Math., 369 (2020), 107188, 53 pp., arXiv: 1807.02384 | DOI | MR | Zbl
[17] De Philippis G., Gigli N., “From volume cone to metric cone in the nonsmooth setting”, Geom. Funct. Anal., 26 (2016), 1526–1587, arXiv: 1512.03113 | DOI | MR | Zbl
[18] Deng Q., Hölder continuity of tangent cones in ${\rm RCD}(K,N)$ spaces and applications to non-branching, arXiv: 2009.07956
[19] Erbar M., Kuwada K., Sturm K.-T., “On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces”, Invent. Math., 201 (2015), 993–1071, arXiv: 1303.4382 | DOI | MR | Zbl
[20] Evans L. C., Gangbo W., Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, 1999, viii+66 pp. | DOI | MR
[21] Feldman M., McCann R. J., “Monge's transport problem on a Riemannian manifold”, Trans. Amer. Math. Soc., 354 (2002), 1667–1697 | DOI | MR | Zbl
[22] Fremlin D. H., Measure theory, Part I, II, v. 4, Topological measure spaces, Torres Fremlin, Colchester, 2006 | MR | Zbl
[23] Gigli N., On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc., 236, 2015, vi+91 pp., arXiv: 1205.6622 | DOI | MR
[24] Gigli N., Mondino A., “A PDE approach to nonlinear potential theory in metric measure spaces”, J. Math. Pures Appl., 100 (2013), 505–534, arXiv: 1209.3796 | DOI | MR | Zbl
[25] Gigli N., Rigoni C., “A note about the strong maximum principle on RCD spaces”, Canad. Math. Bull., 62 (2019), 259–266, arXiv: 1706.01998 | DOI | MR | Zbl
[26] Graf M., “Singularity theorems for $C^1$-Lorentzian metrics”, Comm. Math. Phys., 378 (2020), 1417–1450, arXiv: 1910.13915 | DOI | MR | Zbl
[27] Hawking S. W., “The occurrence of singularities in cosmology. I”, Proc. Roy. Soc. London Ser. A, 294 (1966), 511–521 | DOI | MR | Zbl
[28] Kapovitch V., Ketterer C., Sturm K.-T., On gluing Alexandrov spaces with lower Ricci curvature bounds, arXiv: 2003.06242
[29] Kasue A., “A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold”, Japan. J. Math. (N.S.), 8 (1982), 309–341 | DOI | MR | Zbl
[30] Kasue A., “Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary”, J. Math. Soc. Japan, 35 (1983), 117–131 | DOI | MR | Zbl
[31] Ketterer C., “Ricci curvature bounds for warped products”, J. Funct. Anal., 265 (2013), 266–299, arXiv: 1209.1325 | DOI | MR | Zbl
[32] Ketterer C., “Cones over metric measure spaces and the maximal diameter theorem”, J. Math. Pures Appl., 103 (2015), 1228–1275, arXiv: 1311.1307 | DOI | MR | Zbl
[33] Ketterer C., “Obata's rigidity theorem for metric measure spaces”, Anal. Geom. Metr. Spaces, 3 (2015), 278–295, arXiv: 1410.5210 | DOI | MR | Zbl
[34] Ketterer C., “The Heintze–Karcher inequality for metric measure spaces”, Proc. Amer. Math. Soc., 148 (2020), 4041–4056, arXiv: 1908.06146 | DOI | MR | Zbl
[35] Kitabeppu Y., Lakzian S., “Characterization of low dimensional ${\rm RCD}^*(K,N)$ spaces”, Anal. Geom. Metr. Spaces, 4 (2016), 187–215, arXiv: 1505.00420 | DOI | MR | Zbl
[36] Klartag B., Needle decompositions in Riemannian geometry, Mem. Amer. Math. Soc., 249, 2017, v+77 pp., arXiv: 1408.6322 | DOI | MR
[37] Kunzinger M., Steinbauer R., Stojković M., Vickers J. A., “Hawking's singularity theorem for $C^{1,1}$-metrics”, Classical Quantum Gravity, 32 (2015), 075012, 19 pp., arXiv: 1411.4689 | DOI | MR | Zbl
[38] Li H., Wei Y., “$f$-minimal surface and manifold with positive $m$-Bakry–Émery Ricci curvature”, J. Geom. Anal., 25 (2015), 421–435, arXiv: 1209.0895 | DOI | MR | Zbl
[39] Li H., Wei Y., “Rigidity theorems for diameter estimates of compact manifold with boundary”, Int. Math. Res. Not., 2015 (2015), 3651–3668, arXiv: 1306.3715 | DOI | MR | Zbl
[40] Li M.M.-C., “A sharp comparison theorem for compact manifolds with mean convex boundary”, J. Geom. Anal., 24 (2014), 1490–1496, arXiv: 1204.1695 | DOI | MR | Zbl
[41] Lott J., Villani C., “Ricci curvature for metric-measure spaces via optimal transport”, Ann. of Math., 169 (2009), 903–991, arXiv: math.DG/0412127 | DOI | MR | Zbl
[42] Lu Y., Minguzzi E., Ohta S.-I., Geometry of weighted Lorentz–Finsler manifolds I: Singularity theorems, arXiv: 1908.03832
[43] McCann R. J., “Displacement convexity of Boltzmann's entropy characterizes the strong energy condition from general relativity”, Camb. J. Math., 8 (2020), 609–681, arXiv: 1808.01536 | DOI | MR | Zbl
[44] Minguzzi E., “Lorentzian causality theory”, Living Rev. Relativity, 22 (2019), 3, 202 pp. | DOI | Zbl
[45] Nakajima H., Shioya T., “Isoperimetric rigidity and distributions of 1-Lipschitz functions”, Adv. Math., 349 (2019), 1198–1233, arXiv: 1801.01302 | DOI | MR | Zbl
[46] Ohta S.-I., “On the measure contraction property of metric measure spaces”, Comment. Math. Helv., 82 (2007), 805–828 | DOI | MR | Zbl
[47] Ohta S.-I., “Finsler interpolation inequalities”, Calc. Var. Partial Differential Equations, 36 (2009), 211–249 | DOI | MR | Zbl
[48] Sakurai Y., “Rigidity of manifolds with boundary under a lower Bakry–Émery Ricci curvature bound”, Tohoku Math. J., 71 (2019), 69–109, arXiv: 1506.03223 | DOI | MR | Zbl
[49] Sturm K.-T., “On the geometry of metric measure spaces. II”, Acta Math., 196 (2006), 133–177 | DOI | MR | Zbl
[50] Villani C., Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[51] Wong J., “An extension procedure for manifolds with boundary”, Pacific J. Math., 235 (2008), 173–199 | DOI | MR | Zbl