Mots-clés : quantization, hyperKähler cone
@article{SIGMA_2020_16_a13,
author = {Pavel Etingof and Douglas Stryker},
title = {Short {Star-Products} for {Filtered} {Quantizations,~I}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a13/}
}
Pavel Etingof; Douglas Stryker. Short Star-Products for Filtered Quantizations, I. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a13/
[1] Beem C., Peelaers W., Rastelli L., “Deformation quantization and superconformal symmetry in three dimensions”, Comm. Math. Phys., 354 (2017), 345–392, arXiv: 1601.05378 | DOI | MR | Zbl
[2] Bellamy G., Sweedler M., Symplectic resolutions of quiver varieties and character varieties, arXiv: 1602.00164 | MR
[3] Braden T., Licata A., Proudfoot N., Webster B., “Quantizations of conical symplectic resolutions II: category $\mathcal O$ and symplectic duality”, Astérisque, 384, 2016, 75–179, arXiv: 1407.0964 | MR
[4] Brylinski R., “Instantons and Kähler geometry of nilpotent orbits”, Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Kluwer Acad. Publ., Dordrecht, 1998, 85–125, arXiv: math.SG/9811032 | DOI | MR | Zbl
[5] Carlson F., “Über ganzwertige Funktionen”, Math. Z., 11 (1921), 1–23 | DOI | MR | Zbl
[6] de Siebenthal J., “Sur les groupes de Lie compacts non connexes”, Comment. Math. Helv., 31 (1956), 41–89 | DOI | MR | Zbl
[7] Dedushenko M., Fan Y., Pufu S. S., Yacoby R., “Coulomb branch operators and mirror symmetry in three dimensions”, J. High Energy Phys., 2018:4 (2018), 037, 111 pp., arXiv: 1712.09384 | DOI | MR
[8] Dedushenko M., Fan Y., Pufu S. S., Yacoby R., “Coulomb branch quantization and abelianized monopole bubbling”, J. High Energy Phys., 2019:10 (2019), 179, 96 pp., arXiv: 1812.08788 | DOI | MR | Zbl
[9] Dedushenko M., Pufu S. S., Yacoby R., “A one-dimensional theory for Higgs branch operators”, J. High Energy Phys., 2018:3 (2018), 138, 83 pp., arXiv: 1610.00740 | DOI | MR | Zbl
[10] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism”, Invent. Math., 147 (2002), 243–348, arXiv: math.AG/0011114 | DOI | MR | Zbl
[11] Etingof P., Schedler T., “Poisson traces and $D$-modules on Poisson varieties”, Geom. Funct. Anal., 20 (2010), 958–987, arXiv: 0908.3868 | DOI | MR | Zbl
[12] Gaiotto D., Neitzke A., Tachikawa Y., “Argyres–Seiberg duality and the Higgs branch”, Comm. Math. Phys., 294 (2010), 389–410, arXiv: 0810.4541 | DOI | MR | Zbl
[13] Ginzburg V., “On primitive ideals”, Selecta Math. (N.S.), 9 (2003), 379–407, arXiv: math.RT/0202079 | DOI | MR | Zbl
[14] Gordon I. G., Losev I., “On category $\mathcal{O}$ for cyclotomic rational Cherednik algebras”, J. Eur. Math. Soc. (JEMS), 16 (2014), 1017–1079, arXiv: 1109.2315 | DOI | MR | Zbl
[15] Herbig H.-C., Schwarz G. W., Seaton C., “Symplectic quotients have symplectic singularities”, Compos. Math., 156 (2020), 613–646, arXiv: 1706.02089 | DOI | MR | Zbl
[16] Hitchin N. J., Karlhede A., Lindström U., Roček M., “Hyper-Kähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl
[17] Kaledin D., “Symplectic singularities from the Poisson point of view”, J. Reine Angew. Math., 600 (2006), 135–156, arXiv: math.AG/0310186 | DOI | MR | Zbl
[18] Kraft H., Procesi C., “On the geometry of conjugacy classes in classical groups”, Comment. Math. Helv., 57 (1982), 539–602 | DOI | MR | Zbl
[19] Losev I., Deformations of symplectic singularities and orbit method for semisimple Lie algebras, arXiv: 1605.00592
[20] Losev I., “Bernstein inequality and holonomic modules”, Adv. Math., 308 (2017), 941–963, arXiv: 1501.01260 | DOI | MR | Zbl
[21] Losev I., “On categories $\mathcal O$ for quantized symplectic resolutions”, Compos. Math., 153 (2017), 2445–2481, arXiv: 1502.00595 | DOI | MR | Zbl
[22] Losev I., “Quantizations of regular functions on nilpotent orbits”, Bull. Inst. Math. Acad. Sin. (N.S.), 13 (2018), 199–225, arXiv: 1505.08048 | DOI | MR
[23] Lusztig G., “Character sheaves on disconnected groups. I”, Represent. Theory, 7 (2003), 374–403 ; Errata, Represent. Theory, 8 (2004), 179, arXiv: math.RT/0305206 | DOI | MR | DOI | MR | Zbl
[24] Nakajima H., “Towards a mathematical definition of Coulomb branches of 3-dimensional ${\mathcal N}=4$ gauge theories, I”, Adv. Theor. Math. Phys., 20 (2016), 595–669, arXiv: 1503.03676 | DOI | MR | Zbl
[25] Namikawa Y., “Poisson deformations of affine symplectic varieties, II”, Kyoto J. Math., 50 (2010), 727–752, arXiv: 0902.2832 | DOI | MR | Zbl
[26] Namikawa Y., “Fundamental groups of symplectic singularities”, Higher Dimensional Algebraic Geometry, Honour of Professor Yujiro Kawamata's Sixtieth Birthday, Adv. Stud. Pure Math., 74, eds. K. Oguiso, C. Birkar, S. Ishii, S. Takayama, Math. Soc. Japan, Tokyo, 2017, 321–334, arXiv: 1301.1008 | DOI | MR | Zbl
[27] Namikawa Y., “A characterization of nilpotent orbit closures among symplectic singularities”, Math. Ann., 370 (2018), 811–818, arXiv: 1707.02825 | DOI | MR | Zbl
[28] Pólya G., “Über gewisse notwendige Determinantenkriterien für die Fortsetzbarkeit einer Potenzreihe”, Math. Ann., 99 (1928), 687–706 | DOI | MR | Zbl
[29] Soergel W., “The Hochschild cohomology ring of regular maximal primitive quotients of enveloping algebras of semisimple Lie algebras”, Ann. Sci. École Norm. Sup. (4), 29 (1996), 535–538 | DOI | MR | Zbl
[30] Steinberg R., Conjugacy classes in algebraic groups, Lecture Notes in Math., 366, Springer-Verlag, Berlin–New York, 1974 | DOI | MR | Zbl
[31] Swann A., “Hyper-Kähler and quaternionic Kähler geometry”, Math. Ann., 289 (1991), 421–450 | DOI | MR | Zbl