Short Star-Products for Filtered Quantizations, I
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a theory of short star-products for filtered quantizations of graded Poisson algebras, introduced in 2016 by Beem, Peelaers and Rastelli for algebras of regular functions on hyperKähler cones in the context of 3-dimensional $N=4$ superconformal field theories [Beem C., Peelaers W., Rastelli L., Comm. Math. Phys. 354 (2017), 345–392]. This appears to be a new structure in representation theory, which is an algebraic incarnation of the non-holomorphic ${\rm SU}(2)$-symmetry of such cones. Using the technique of twisted traces on quantizations (an idea due to Kontsevich), we prove the conjecture by Beem, Peelaers and Rastelli that short star-products depend on finitely many parameters (under a natural nondegeneracy condition), and also construct these star products in a number of examples, confirming another conjecture by Beem, Peelaers and Rastelli.
Keywords: star-product, symplectic singularity.
Mots-clés : quantization, hyperKähler cone
@article{SIGMA_2020_16_a13,
     author = {Pavel Etingof and Douglas Stryker},
     title = {Short {Star-Products} for {Filtered} {Quantizations,~I}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a13/}
}
TY  - JOUR
AU  - Pavel Etingof
AU  - Douglas Stryker
TI  - Short Star-Products for Filtered Quantizations, I
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a13/
LA  - en
ID  - SIGMA_2020_16_a13
ER  - 
%0 Journal Article
%A Pavel Etingof
%A Douglas Stryker
%T Short Star-Products for Filtered Quantizations, I
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a13/
%G en
%F SIGMA_2020_16_a13
Pavel Etingof; Douglas Stryker. Short Star-Products for Filtered Quantizations, I. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a13/

[1] Beem C., Peelaers W., Rastelli L., “Deformation quantization and superconformal symmetry in three dimensions”, Comm. Math. Phys., 354 (2017), 345–392, arXiv: 1601.05378 | DOI | MR | Zbl

[2] Bellamy G., Sweedler M., Symplectic resolutions of quiver varieties and character varieties, arXiv: 1602.00164 | MR

[3] Braden T., Licata A., Proudfoot N., Webster B., “Quantizations of conical symplectic resolutions II: category $\mathcal O$ and symplectic duality”, Astérisque, 384, 2016, 75–179, arXiv: 1407.0964 | MR

[4] Brylinski R., “Instantons and Kähler geometry of nilpotent orbits”, Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Kluwer Acad. Publ., Dordrecht, 1998, 85–125, arXiv: math.SG/9811032 | DOI | MR | Zbl

[5] Carlson F., “Über ganzwertige Funktionen”, Math. Z., 11 (1921), 1–23 | DOI | MR | Zbl

[6] de Siebenthal J., “Sur les groupes de Lie compacts non connexes”, Comment. Math. Helv., 31 (1956), 41–89 | DOI | MR | Zbl

[7] Dedushenko M., Fan Y., Pufu S. S., Yacoby R., “Coulomb branch operators and mirror symmetry in three dimensions”, J. High Energy Phys., 2018:4 (2018), 037, 111 pp., arXiv: 1712.09384 | DOI | MR

[8] Dedushenko M., Fan Y., Pufu S. S., Yacoby R., “Coulomb branch quantization and abelianized monopole bubbling”, J. High Energy Phys., 2019:10 (2019), 179, 96 pp., arXiv: 1812.08788 | DOI | MR | Zbl

[9] Dedushenko M., Pufu S. S., Yacoby R., “A one-dimensional theory for Higgs branch operators”, J. High Energy Phys., 2018:3 (2018), 138, 83 pp., arXiv: 1610.00740 | DOI | MR | Zbl

[10] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism”, Invent. Math., 147 (2002), 243–348, arXiv: math.AG/0011114 | DOI | MR | Zbl

[11] Etingof P., Schedler T., “Poisson traces and $D$-modules on Poisson varieties”, Geom. Funct. Anal., 20 (2010), 958–987, arXiv: 0908.3868 | DOI | MR | Zbl

[12] Gaiotto D., Neitzke A., Tachikawa Y., “Argyres–Seiberg duality and the Higgs branch”, Comm. Math. Phys., 294 (2010), 389–410, arXiv: 0810.4541 | DOI | MR | Zbl

[13] Ginzburg V., “On primitive ideals”, Selecta Math. (N.S.), 9 (2003), 379–407, arXiv: math.RT/0202079 | DOI | MR | Zbl

[14] Gordon I. G., Losev I., “On category $\mathcal{O}$ for cyclotomic rational Cherednik algebras”, J. Eur. Math. Soc. (JEMS), 16 (2014), 1017–1079, arXiv: 1109.2315 | DOI | MR | Zbl

[15] Herbig H.-C., Schwarz G. W., Seaton C., “Symplectic quotients have symplectic singularities”, Compos. Math., 156 (2020), 613–646, arXiv: 1706.02089 | DOI | MR | Zbl

[16] Hitchin N. J., Karlhede A., Lindström U., Roček M., “Hyper-Kähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl

[17] Kaledin D., “Symplectic singularities from the Poisson point of view”, J. Reine Angew. Math., 600 (2006), 135–156, arXiv: math.AG/0310186 | DOI | MR | Zbl

[18] Kraft H., Procesi C., “On the geometry of conjugacy classes in classical groups”, Comment. Math. Helv., 57 (1982), 539–602 | DOI | MR | Zbl

[19] Losev I., Deformations of symplectic singularities and orbit method for semisimple Lie algebras, arXiv: 1605.00592

[20] Losev I., “Bernstein inequality and holonomic modules”, Adv. Math., 308 (2017), 941–963, arXiv: 1501.01260 | DOI | MR | Zbl

[21] Losev I., “On categories $\mathcal O$ for quantized symplectic resolutions”, Compos. Math., 153 (2017), 2445–2481, arXiv: 1502.00595 | DOI | MR | Zbl

[22] Losev I., “Quantizations of regular functions on nilpotent orbits”, Bull. Inst. Math. Acad. Sin. (N.S.), 13 (2018), 199–225, arXiv: 1505.08048 | DOI | MR

[23] Lusztig G., “Character sheaves on disconnected groups. I”, Represent. Theory, 7 (2003), 374–403 ; Errata, Represent. Theory, 8 (2004), 179, arXiv: math.RT/0305206 | DOI | MR | DOI | MR | Zbl

[24] Nakajima H., “Towards a mathematical definition of Coulomb branches of 3-dimensional ${\mathcal N}=4$ gauge theories, I”, Adv. Theor. Math. Phys., 20 (2016), 595–669, arXiv: 1503.03676 | DOI | MR | Zbl

[25] Namikawa Y., “Poisson deformations of affine symplectic varieties, II”, Kyoto J. Math., 50 (2010), 727–752, arXiv: 0902.2832 | DOI | MR | Zbl

[26] Namikawa Y., “Fundamental groups of symplectic singularities”, Higher Dimensional Algebraic Geometry, Honour of Professor Yujiro Kawamata's Sixtieth Birthday, Adv. Stud. Pure Math., 74, eds. K. Oguiso, C. Birkar, S. Ishii, S. Takayama, Math. Soc. Japan, Tokyo, 2017, 321–334, arXiv: 1301.1008 | DOI | MR | Zbl

[27] Namikawa Y., “A characterization of nilpotent orbit closures among symplectic singularities”, Math. Ann., 370 (2018), 811–818, arXiv: 1707.02825 | DOI | MR | Zbl

[28] Pólya G., “Über gewisse notwendige Determinantenkriterien für die Fortsetzbarkeit einer Potenzreihe”, Math. Ann., 99 (1928), 687–706 | DOI | MR | Zbl

[29] Soergel W., “The Hochschild cohomology ring of regular maximal primitive quotients of enveloping algebras of semisimple Lie algebras”, Ann. Sci. École Norm. Sup. (4), 29 (1996), 535–538 | DOI | MR | Zbl

[30] Steinberg R., Conjugacy classes in algebraic groups, Lecture Notes in Math., 366, Springer-Verlag, Berlin–New York, 1974 | DOI | MR | Zbl

[31] Swann A., “Hyper-Kähler and quaternionic Kähler geometry”, Math. Ann., 289 (1991), 421–450 | DOI | MR | Zbl