Defining Pointwise Lower Scalar Curvature Bounds for $C^0$ Metrics with Regularization by Ricci Flow
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We survey some recent work using Ricci flow to create a class of local definitions of weak lower scalar curvature bounds that is well defined for $C^0$ metrics. We discuss several properties of these definitions and explain some applications of this approach to questions regarding uniform convergence of metrics with scalar curvature bounded below. Finally, we consider the relationship between this approach and some other generalized notions of lower scalar curvature bounds.
Keywords: Ricci flow, scalar curvature, synthetic lower curvature bounds.
@article{SIGMA_2020_16_a127,
     author = {Paula Burkhardt-Guim},
     title = {Defining {Pointwise} {Lower} {Scalar} {Curvature} {Bounds} for $C^0$ {Metrics} with {Regularization} by {Ricci} {Flow}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a127/}
}
TY  - JOUR
AU  - Paula Burkhardt-Guim
TI  - Defining Pointwise Lower Scalar Curvature Bounds for $C^0$ Metrics with Regularization by Ricci Flow
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a127/
LA  - en
ID  - SIGMA_2020_16_a127
ER  - 
%0 Journal Article
%A Paula Burkhardt-Guim
%T Defining Pointwise Lower Scalar Curvature Bounds for $C^0$ Metrics with Regularization by Ricci Flow
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a127/
%G en
%F SIGMA_2020_16_a127
Paula Burkhardt-Guim. Defining Pointwise Lower Scalar Curvature Bounds for $C^0$ Metrics with Regularization by Ricci Flow. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a127/

[1] Bamler R. H., “A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature”, Math. Res. Lett., 23 (2016), 325–337, arXiv: 1505.00088 | DOI | MR | Zbl

[2] Bamler R. H., Kleiner B., Uniqueness and stability of Ricci flow through singularities, arXiv: 1709.04122

[3] Burkhardt-Guim P., “Pointwise lower scalar curvature bounds for $C^0$ metrics via regularizing Ricci flow”, Geom. Funct. Anal., 29 (2019), 1703–1772, arXiv: 1907.13116 | DOI | MR | Zbl

[4] DeTurck D. M., “Deforming metrics in the direction of their Ricci tensors”, J. Differential Geom., 18 (1983), 157–162 | DOI | MR | Zbl

[5] Gromov M., “Dirac and Plateau billiards in domains with corners”, Cent. Eur. J. Math., 12 (2014), 1109–1156, arXiv: 1811.04318 | DOI | MR | Zbl

[6] Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl

[7] Koch H., Lamm T., “Geometric flows with rough initial data”, Asian J. Math., 16 (2012), 209–235, arXiv: 0902.1488 | DOI | MR | Zbl

[8] Koch H., Lamm T., “Parabolic equations with rough data”, Math. Bohem., 140 (2015), 457–477, arXiv: 1310.3658 | DOI | MR | Zbl

[9] Lee D. A., LeFloch P. G., “The positive mass theorem for manifolds with distributional curvature”, Comm. Math. Phys., 339 (2015), 99–120, arXiv: 1408.4431 | DOI | MR | Zbl

[10] Schoen R., Yau S. T., “On the structure of manifolds with positive scalar curvature”, Manuscripta Math., 28 (1979), 159–183 | DOI | MR | Zbl

[11] Simon M., “Deformation of $C^0$ Riemannian metrics in the direction of their Ricci curvature”, Comm. Anal. Geom., 10 (2002), 1033–1074 | DOI | MR | Zbl

[12] Topping P., Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl