@article{SIGMA_2020_16_a127,
author = {Paula Burkhardt-Guim},
title = {Defining {Pointwise} {Lower} {Scalar} {Curvature} {Bounds} for $C^0$ {Metrics} with {Regularization} by {Ricci} {Flow}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a127/}
}
TY - JOUR AU - Paula Burkhardt-Guim TI - Defining Pointwise Lower Scalar Curvature Bounds for $C^0$ Metrics with Regularization by Ricci Flow JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a127/ LA - en ID - SIGMA_2020_16_a127 ER -
%0 Journal Article %A Paula Burkhardt-Guim %T Defining Pointwise Lower Scalar Curvature Bounds for $C^0$ Metrics with Regularization by Ricci Flow %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a127/ %G en %F SIGMA_2020_16_a127
Paula Burkhardt-Guim. Defining Pointwise Lower Scalar Curvature Bounds for $C^0$ Metrics with Regularization by Ricci Flow. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a127/
[1] Bamler R. H., “A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature”, Math. Res. Lett., 23 (2016), 325–337, arXiv: 1505.00088 | DOI | MR | Zbl
[2] Bamler R. H., Kleiner B., Uniqueness and stability of Ricci flow through singularities, arXiv: 1709.04122
[3] Burkhardt-Guim P., “Pointwise lower scalar curvature bounds for $C^0$ metrics via regularizing Ricci flow”, Geom. Funct. Anal., 29 (2019), 1703–1772, arXiv: 1907.13116 | DOI | MR | Zbl
[4] DeTurck D. M., “Deforming metrics in the direction of their Ricci tensors”, J. Differential Geom., 18 (1983), 157–162 | DOI | MR | Zbl
[5] Gromov M., “Dirac and Plateau billiards in domains with corners”, Cent. Eur. J. Math., 12 (2014), 1109–1156, arXiv: 1811.04318 | DOI | MR | Zbl
[6] Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl
[7] Koch H., Lamm T., “Geometric flows with rough initial data”, Asian J. Math., 16 (2012), 209–235, arXiv: 0902.1488 | DOI | MR | Zbl
[8] Koch H., Lamm T., “Parabolic equations with rough data”, Math. Bohem., 140 (2015), 457–477, arXiv: 1310.3658 | DOI | MR | Zbl
[9] Lee D. A., LeFloch P. G., “The positive mass theorem for manifolds with distributional curvature”, Comm. Math. Phys., 339 (2015), 99–120, arXiv: 1408.4431 | DOI | MR | Zbl
[10] Schoen R., Yau S. T., “On the structure of manifolds with positive scalar curvature”, Manuscripta Math., 28 (1979), 159–183 | DOI | MR | Zbl
[11] Simon M., “Deformation of $C^0$ Riemannian metrics in the direction of their Ricci curvature”, Comm. Anal. Geom., 10 (2002), 1033–1074 | DOI | MR | Zbl
[12] Topping P., Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl