@article{SIGMA_2020_16_a126,
author = {Rudolf Zeidler},
title = {Width, {Largeness} and {Index} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a126/}
}
Rudolf Zeidler. Width, Largeness and Index Theory. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a126/
[1] Baum P., Karoubi M., “On the Baum–Connes conjecture in the real case”, Q. J. Math., 55 (2004), 231–235, arXiv: math.OA/0509495 | DOI | MR | Zbl
[2] Brunnbauer M., Hanke B., “Large and small group homology”, J. Topol., 3 (2010), 463–486, arXiv: 0902.0869 | DOI | MR | Zbl
[3] Bunke U., “A $K$-theoretic relative index theorem and Callias-type Dirac operators”, Math. Ann., 303 (1995), 241–279 | DOI | MR | Zbl
[4] Cecchini S., “Callias-type operators in $C^*$-algebras and positive scalar curvature on noncompact manifolds”, J. Topol. Anal., 12 (2020), 897–939, arXiv: 1611.01800 | DOI | MR | Zbl
[5] Cecchini S., “A long neck principle for Riemannian spin manifolds with positive scalar curvature”, Geom. Funct. Anal., 30 (2020), 1183–1223, arXiv: 2002.07131 | DOI | MR | Zbl
[6] Cecchini S., Schick T., “Enlargeable metrics on nonspin manifolds”, Proc. Amer. Math. Soc. (to appear) , arXiv: 1810.02116 | DOI
[7] Chang S., “Coarse obstructions to positive scalar curvature in noncompact arithmetic manifolds”, J. Differential Geom., 57 (2001), 1–21, arXiv: math.DG/0005115 | DOI | MR | Zbl
[8] Chang S., Weinberger S., Yu G., “Taming 3-manifolds using scalar curvature”, Geom. Dedicata, 148 (2010), 3–14 | DOI | MR | Zbl
[9] Ebert J., Elliptic regularity for Dirac operators on families of noncompact manifolds, arXiv: 1608.01699
[10] Engel A., Wrong way maps in uniformly finite homology and homology of groups, J. Homotopy Relat. Struct., 13 (2018), 423–441, arXiv: 1602.03374 | DOI | MR | Zbl
[11] Engel A., “Rough index theory on spaces of polynomial growth and contractibility”, J. Noncommut. Geom., 13 (2019), 617–666, arXiv: 1505.03988 | DOI | MR | Zbl
[12] Gromov M., “Metric inequalities with scalar curvature”, Geom. Funct. Anal., 28 (2018), 645–726, arXiv: 1710.04655 | DOI | MR | Zbl
[13] Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612
[14] Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl
[15] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 58, 1983, 83–196 | DOI | MR | Zbl
[16] Hanke B., Kotschick D., Roe J., Schick T., “Coarse topology, enlargeability, and essentialness”, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 471–493, arXiv: 0707.1999 | DOI | MR
[17] Hanke B., Pape D., Schick T., “Codimension two index obstructions to positive scalar curvature”, Ann. Inst. Fourier (Grenoble), 65 (2015), 2681–2710, arXiv: 1402.4094 | DOI | MR | Zbl
[18] Hanke B., Schick T., “Enlargeability and index theory”, J. Differential Geom., 74 (2006), 293–320, arXiv: math.GT/0403257 | DOI | MR | Zbl
[19] Hanke B., Schick T., “Enlargeability and index theory: infinite covers”, $K$-Theory, 38 (2007), 23–33, arXiv: math.GT/0604540 | DOI | MR | Zbl
[20] Higson N., “A note on the cobordism invariance of the index”, Topology, 30 (1991), 439–443 | DOI | MR | Zbl
[21] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl
[22] Joyce D. D., “Compact $8$-manifolds with holonomy ${\rm Spin}(7)$”, Invent. Math., 123 (1996), 507–552 | DOI | MR | Zbl
[23] Kubota Y., The relative Mishchenko–Fomenko higher index and almost flat bundles II: Almost flat index pairing, arXiv: 1908.10733 | MR
[24] Kubota Y., Schick T., “The Gromov–Lawson codimension 2 obstruction to positive scalar curvature and the $C^*$-index”, Geom. Topol. (to appear) , arXiv: 1909.09584
[25] Lawson Jr. H.B., Michelsohn M. L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[26] Lichnerowicz A., “Spineurs harmoniques”, C. R. Acad. Sci. Paris, 257 (1963), 7–9 | MR | Zbl
[27] Miščenko A. S., Fomenko A. T., “The index of elliptic operators over $C^{\ast} $-algebras”, Math. USSR Izv., 15 (1980), 87–112 | DOI
[28] Nitsche M., Schick T., Zeidler R., Transfer maps in generalized group homology via submanifolds, arXiv: 1906.01190
[29] Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, 90, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl
[30] Rosenberg J., “$C^{\ast} $-algebras, positive scalar curvature, and the Novikov conjecture”, Inst. Hautes Études Sci. Publ. Math., 1983, 197–212 | DOI | MR
[31] Rosenberg J., “$C^\ast$-algebras, positive scalar curvature and the Novikov conjecture. II”, Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986, 341–374 | MR
[32] Rosenberg J., “$C^\ast$-algebras, positive scalar curvature, and the Novikov conjecture. III”, Topology, 25 (1986), 319–336 | DOI | MR | Zbl
[33] Rosenberg J., Stolz S., “Manifolds of positive scalar curvature”, Algebraic Topology and its Applications, Math. Sci. Res. Inst. Publ., 27, Springer, New York, 1994, 241–267 | DOI | MR | Zbl
[34] Rosenberg J., Stolz S., “A “stable” version of the Gromov–Lawson conjecture”, The Čech Centennial (Boston, MA, 1993), Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995, 405–418, arXiv: dg-ga/9407002 | DOI | MR | Zbl
[35] Rosenberg J., Stolz S., “Metrics of positive scalar curvature and connections with surgery”, Surveys on Surgery Theory, v. 2, Ann. of Math. Stud., 149, Princeton University Press, Princeton, NJ, 2001, 353–386 | MR | Zbl
[36] Schick T., “A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture”, Topology, 37 (1998), 1165–1168, arXiv: math.GT/0403063 | DOI | MR | Zbl
[37] Schick T., “Real versus complex $K$-theory using Kasparov's bivariant $KK$-theory”, Algebr. Geom. Topol., 4 (2004), 333–346, arXiv: math.KT/0311295 | DOI | MR | Zbl
[38] Schick T., “The topology of positive scalar curvature”, Proceedings of the International Congress of Mathematicians (Seoul 2014), v. II, Kyung Moon Sa, Seoul, 2014, 1285–1307, arXiv: 1405.4220 | MR | Zbl
[39] Schick T., Zadeh M. E., “Large scale index of multi-partitioned manifolds”, J. Noncommut. Geom., 12 (2018), 439–456, arXiv: 1308.0742 | DOI | MR | Zbl
[40] Schoen R., Yau S. T., “On the structure of manifolds with positive scalar curvature”, Manuscripta Math., 28 (1979), 159–183 | DOI | MR | Zbl
[41] Stolz S., Concordance classes of positive scalar curvature metrics, Preprint, 1998 http://www3.nd.edu/s̃tolz/concordance.ps
[42] Stolz S., “Simply connected manifolds of positive scalar curvature”, Ann. of Math., 136 (1992), 511–540 | DOI | MR | Zbl
[43] Stolz S., “Manifolds of positive scalar curvature”, Topology of High-Dimensional Manifolds (Trieste, 2001), ICTP Lect. Notes, 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, 661–709 | MR | Zbl
[44] Taubes C. H., “The Seiberg–Witten invariants and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | DOI | MR | Zbl
[45] Zeidler R., “An index obstruction to positive scalar curvature on fiber bundles over aspherical manifolds”, Algebr. Geom. Topol., 17 (2017), 3081–3094, arXiv: 1512.06781 | DOI | MR | Zbl
[46] Zeidler R., “Band width estimates via the Dirac operator”, J. Differential Geom. (to appear) , arXiv: 1905.08520