Mots-clés : moduli spaces
@article{SIGMA_2020_16_a125,
author = {Jock McOrist and Roberto Sisca},
title = {Small {Gauge} {Transformations} and {Universal} {Geometry} in {Heterotic} {Theories}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a125/}
}
TY - JOUR AU - Jock McOrist AU - Roberto Sisca TI - Small Gauge Transformations and Universal Geometry in Heterotic Theories JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a125/ LA - en ID - SIGMA_2020_16_a125 ER -
Jock McOrist; Roberto Sisca. Small Gauge Transformations and Universal Geometry in Heterotic Theories. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a125/
[1] Anderson L. B., Gray J., Sharpe E., “Algebroids, heterotic moduli spaces and the Strominger system”, J. High Energy Phys., 2014:7 (20104), 037, 40 pp., arXiv: 1402.1532 | DOI
[2] Anguelova L., Quigley C., Sethi S., “The leading quantum corrections to stringy Kähler potentials”, J. High Energy Phys., 2010:10 (2010), 065, 27 pp., arXiv: 1007.4793 | DOI | MR | Zbl
[3] Ashmore A., de la Ossa X., Minasian R., Strickland-Constable C., Svanes E. E., “Finite deformations from a heterotic superpotential: holomorphic Chern–Simons and an $L_\infty$ algebra”, J. High Energy Phys., 2018:10 (2018), 179, 59 pp., arXiv: 1806.08367 | DOI | MR | Zbl
[4] Candelas P., de la Ossa X., McOrist J., “A metric for heterotic moduli”, Comm. Math. Phys., 356 (2017), 567–612, arXiv: 1605.05256 | DOI | MR | Zbl
[5] Candelas P., de la Ossa X., McOrist J., Sisca R., “The universal geometry of heterotic vacua”, J. High Energy Phys., 2019:2 (2019), 038, 46 pp., arXiv: 1810.00879 | DOI | MR
[6] Candelas P., de la Ossa X. C., “Moduli space of Calabi–Yau manifolds”, Nuclear Phys. B, 355 (1991), 455–481 | DOI | MR | Zbl
[7] de la Ossa X., Svanes E. E., “Connections, field redefinitions and heterotic supergravity”, J. High Energy Phys., 2014:12 (2014), 008, 27 pp., arXiv: 1409.3347 | DOI
[8] de la Ossa X., Svanes E. E., “Holomorphic bundles and the moduli space of $N=1$ supersymmetric heterotic compactifications”, J. High Energy Phys., 2014:10 (2014), 123, 55 pp., arXiv: 1402.1725 | DOI | MR | Zbl
[9] Donagi R., Guffin J., Katz S., Sharpe E., “Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties”, Adv. Theor. Math. Phys., 17 (2013), 1255–1301, arXiv: 1110.3752 | DOI | MR | Zbl
[10] Donagi R., Guffin J., Katz S., Sharpe E., “A mathematical theory of quantum sheaf cohomology”, Asian J. Math., 18 (2014), 387–417, arXiv: 1110.3751 | DOI | MR
[11] Garcia-Fernandez M., Rubio R., Tipler C., “Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry”, Math. Ann., 369 (2017), 539–595, arXiv: 1503.07562 | DOI | MR | Zbl
[12] Garcia-Fernandez M., Rubio R., Tipler C., “Holomorphic string algebroids”, Trans. Amer. Math. Soc., 373 (2020), 7347–7382, arXiv: 1807.10329 | DOI | MR | Zbl
[13] Gillard J., Papadopoulos G., Tsimpis D., “Anomaly, fluxes and $(2,0)$ heterotic-string compactifications”, J. High Energy Phys., 2003:6 (2003), 035, 25 pp., arXiv: hep-th/0304126 | DOI | MR
[14] Itoh M., “Geometry of anti-self-dual connections and Kuranishi map”, J. Math. Soc. Japan, 40 (1988), 9–33 | DOI | MR | Zbl
[15] Ivanov S., “Heterotic supersymmetry, anomaly cancellation and equations of motion”, Phys. Lett. B, 685 (2010), 190–196, arXiv: 0908.292 | DOI | MR
[16] Kobayashi S., Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, Princeton, NJ, 1987 | DOI | MR | Zbl
[17] Kodaira K., Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer-Verlag, Berlin, 2005 | DOI | MR | Zbl
[18] McOrist J., “The revival of $(0,2)$ sigma models”, Internat. J. Modern Phys. A, 26 (2011), 1–41, arXiv: 1010.4667 | DOI | MR | Zbl
[19] McOrist J., “On the effective field theory of heterotic vacua”, Lett. Math. Phys., 108 (2018), 1031–1081, arXiv: 1606.05221 | DOI | MR | Zbl
[20] McOrist J., Melnikov I. V., “Half-twisted correlators from the Coulomb branch”, J. High Energy Phys., 2008:4 (2008), 071, 19 pp., arXiv: 0712.3272 | DOI | MR | Zbl
[21] McOrist J., Melnikov I. V., Summing the instantons in half-twisted linear sigma models, J. High Energy Phys., 2009:2 (2009), 026, 61 pp., arXiv: 0810.0012 | DOI | MR | Zbl
[22] McOrist J., Melnikov I. V., Old issues and linear sigma models, Adv. Theor. Math. Phys., 16 (2012), 251–288, arXiv: 1103.1322 | DOI | MR | Zbl
[23] Melnikov I. V., An introduction to two-dimensional quantum field theory with $(0,2)$ supersymmetry, Lecture Notes in Physics, 951, Springer, Cham, 2019 | DOI | MR
[24] Melnikov I. V., Sethi S., Sharpe E., “Recent developments in $(0,2)$ mirror symmetry”, SIGMA, 8 (2012), 068, 28 pp., arXiv: 1209.1134 | DOI | MR | Zbl
[25] Melnikov I. V., Sharpe E., “On marginal deformations of $(0,2)$ non-linear sigma models”, Phys. Lett. B, 705 (2011), 529–534, arXiv: 1110.1886 | DOI | MR
[26] Nakahara M., Geometry, topology and physics, Graduate Student Series in Physics, 2nd ed., Institute of Physics, Bristol, 2003 | DOI | MR | Zbl
[27] Strominger A., “Special geometry”, Comm. Math. Phys., 133 (1990), 163–180 | DOI | MR | Zbl
[28] Witten E., “New issues in manifolds of ${\rm SU}(3)$ holonomy”, Nuclear Phys. B, 268 (1986), 79–112 | DOI | MR
[29] Witten L., Witten E., “Large radius expansion of superstring compactifications”, Nuclear Phys. B, 281 (1987), 109–126 | DOI | MR