Mots-clés : moduli spaces
@article{SIGMA_2020_16_a124,
author = {Frank Loray and Valente Ram{\'\i}rez},
title = {A {Map} {Between} {Moduli} {Spaces} of {Connections}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a124/}
}
Frank Loray; Valente Ramírez. A Map Between Moduli Spaces of Connections. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a124/
[1] Arinkin D., Lysenko S., “Isomorphisms between moduli spaces of ${\rm SL}(2)$-bundles with connections on $P^1\setminus \{x_1,\dots, x_4\}$”, Math. Res. Lett., 4 (1997), 181–190 | DOI | MR | Zbl
[2] Arinkin D., Lysenko S., “On the moduli of ${\rm SL}(2)$-bundles with connections on $P^1\setminus\{x_1,\dots,x_4\}$”, Int. Math. Res. Not., 1997 (1997), 983–999 | DOI | MR | Zbl
[3] Biswas I., Mukherjee A., “Symplectic structures on moduli spaces of parabolic Higgs bundles and Hilbert scheme”, Comm. Math. Phys., 240 (2003), 149–159, arXiv: math.AG/0302207 | DOI | MR | Zbl
[4] Boalch P., “Symplectic manifolds and isomonodromic deformations”, Adv. Math., 163 (2001), 137–205, arXiv: 2002.00052 | DOI | MR | Zbl
[5] Diarra K., Loray F., “Ramified covers and tame isomonodromic solutions on curves”, Trans. Moscow Math. Soc., 2015 (2015), 219–236, arXiv: 1412.8196 | DOI | MR | Zbl
[6] Fassarella T., Loray F., “Flat parabolic vector bundles on elliptic curves”, J. Reine Angew. Math., 761 (2020), 81–122, arXiv: 1707.00820 | DOI | MR | Zbl
[7] Fernández Vargas N., “Geometry of the moduli of parabolic bundles on elliptic curves”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1611.05417 | DOI
[8] Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl
[9] Goldman W. M., “Ergodic theory on moduli spaces”, Ann. of Math., 146 (1997), 475–507 | DOI | MR | Zbl
[10] Heu V., Loray F., Flat rank two vector bundles on genus two curves, Mem. Amer. Math. Soc., 259, 2019, v+103 pp., arXiv: 1401.2449 | DOI | MR
[11] Hitchin N. J., “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Differential Geom., 42 (1995), 30–112 | DOI | MR | Zbl
[12] Inaba M.-A., “Moduli of parabolic connections on curves and the Riemann–Hilbert correspondence”, J. Algebraic Geom., 22 (2013), 407–480, arXiv: math.AG/0602004 | DOI | MR | Zbl
[13] Inaba M.-A., Iwasaki K., Saito M.-H., “Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI I”, Publ. Res. Inst. Math. Sci., 42 (2006), 987–1089, arXiv: math.AG/0309342 | DOI | MR | Zbl
[14] Iwasaki K., “Fuchsian moduli on a Riemann surface—its Poisson structure and Poincaré–Lefschetz duality”, Pacific J. Math., 155 (1992), 319–340 | DOI | MR | Zbl
[15] Iwasaki K., “A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation”, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 131–135 | DOI | MR | Zbl
[16] Loray F., “Isomonodromic deformations of Lamé connections, Painlevé VI equation and Okamoto symmetry”, Izv. Math., 80 (2016), 113–166, arXiv: 1410.4976 | DOI | MR | Zbl
[17] Loray F., Saito M. H., “Lagrangian fibrations in duality on moduli spaces of rank 2 logarithmic connections over the projective line”, Int. Math. Res. Not., 2015 (2015), 995–1043, arXiv: 1302.4113 | DOI | MR | Zbl
[18] Loray F., van der Put M., Ulmer F., “The Lamé family of connections on the projective line”, Ann. Fac. Sci. Toulouse Math., 17 (2008), 371–409 | DOI | MR | Zbl
[19] Machu F.-X., “Monodromy of a class of logarithmic connections on an elliptic curve”, SIGMA, 3 (2007), 082, 31 pp., arXiv: 0708.2186 | DOI | MR | Zbl
[20] Mazzocco M., Vidunas R., “Cubic and quartic transformations of the sixth Painlevé equation in terms of Riemann–Hilbert correspondence”, Stud. Appl. Math., 130 (2013), 17–48, arXiv: 1011.6036 | DOI | MR | Zbl
[21] Nitsure N., “Moduli of semistable logarithmic connections”, J. Amer. Math. Soc., 6 (1993), 597–609 | DOI | MR | Zbl
[22] Ramirez V., Connections on elliptic curves, GitHub repository, , 2019 https://github.com/valentermz/Connections-on-elliptic-curves
[23] The Sage Developers, The Sage Mathematics Software System, Version 8.7, , 2019 https://www.sagemath.org
[24] Tsuda T., Okamoto K., Sakai H., “Folding transformations of the Painlevé equations”, Math. Ann., 331 (2005), 713–738 | DOI | MR | Zbl
[25] Tu L.W., “Semistable bundles over an elliptic curve”, Adv. Math., 98 (1993), 1–26 | DOI | MR