@article{SIGMA_2020_16_a122,
author = {Shaosai Huang and Xiaochun Rong and Bing Wang},
title = {Collapsing {Geometry} with {Ricci} {Curvature} {Bounded} {Below} and {Ricci} {Flow} {Smoothing}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a122/}
}
TY - JOUR AU - Shaosai Huang AU - Xiaochun Rong AU - Bing Wang TI - Collapsing Geometry with Ricci Curvature Bounded Below and Ricci Flow Smoothing JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a122/ LA - en ID - SIGMA_2020_16_a122 ER -
%0 Journal Article %A Shaosai Huang %A Xiaochun Rong %A Bing Wang %T Collapsing Geometry with Ricci Curvature Bounded Below and Ricci Flow Smoothing %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a122/ %G en %F SIGMA_2020_16_a122
Shaosai Huang; Xiaochun Rong; Bing Wang. Collapsing Geometry with Ricci Curvature Bounded Below and Ricci Flow Smoothing. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a122/
[1] Bamler R. H., Zhang Q. S., “Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature”, Adv. Math., 319 (2017), 396–450, arXiv: 1501.01291 | DOI | MR | Zbl
[2] Bamler R. H., Zhang Q. S., “Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature – Part II”, Calc. Var. Partial Differential Equations, 58 (2019), 49, 14 pp., arXiv: 1506.03154 | DOI | MR | Zbl
[3] Bochner S., “Vector fields and Ricci curvature”, Bull. Amer. Math. Soc., 52 (1946), 776–797 | DOI | MR | Zbl
[4] Buser P., Karcher H., Gromov's almost flat manifolds, Astérisque, 81, 1981, 148 pp. | MR | Zbl
[5] Buyalo S. V., “Collapsing manifolds of nonpositive curvature. I”, Leningrad Math. J., 1 (1990), 1135–1155 | MR
[6] Buyalo S. V., “Collapsing manifolds of nonpositive curvature. II”, Leningrad Math. J., 1 (1990), 1371–1399 | MR
[7] Cai Q., Rong X., “Collapsing construction with nilpotent structures”, Geom. Funct. Anal., 18 (2009), 1503–1524 | DOI | MR | Zbl
[8] Cao J., Cheeger J., Rong X., “Splittings and Cr-structures for manifolds with nonpositive sectional curvature”, Invent. Math., 144 (2001), 139–167 | DOI | MR | Zbl
[9] Cao J., Cheeger J., Rong X., “Local splitting structures on nonpositively curved manifolds and semirigidity in dimension 3”, Comm. Anal. Geom., 12 (2004), 389–415 | DOI | MR | Zbl
[10] Cavalletti F., Mondino A., “Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds”, Invent. Math., 208 (2017), 803–849, arXiv: 1502.06465 | DOI | MR | Zbl
[11] Chau A., Tam L.-F., Yu C., “Pseudolocality for the Ricci flow and applications”, Canad. J. Math., 63 (2011), 55–85, arXiv: math.DG/0701153 | DOI | MR | Zbl
[12] Cheeger J., “Finiteness theorems for Riemannian manifolds”, Amer. J. Math., 92 (1970), 61–74 | DOI | MR | Zbl
[13] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. I”, J. Differential Geom., 46 (1997), 406–480 | DOI | MR | Zbl
[14] Cheeger J., Fukaya K., Gromov M., “Nilpotent structures and invariant metrics on collapsed manifolds”, J. Amer. Math. Soc., 5 (1992), 327–372 | DOI | MR | Zbl
[15] Cheeger J., Gromoll D., “The splitting theorem for manifolds of nonnegative Ricci curvature”, J. Differential Geometry, 6 (1971), 119–128 | DOI | MR | Zbl
[16] Cheeger J., Gromov M., “Collapsing Riemannian manifolds while keeping their curvature bounded. I”, J. Differential Geom., 23 (1986), 309–346 | DOI | MR | Zbl
[17] Cheeger J., Gromov M., “Collapsing Riemannian manifolds while keeping their curvature bounded. II”, J. Differential Geom., 32 (1990), 269–298 | DOI | MR | Zbl
[18] Cheeger J., Jiang W., Naber A., Rectifiability of singular sets in noncollapsed spaces with Ricci curvature bounded below, arXiv: 1805.07988
[19] Cheeger J., Rong X., “Collapsed Riemannian manifolds with bounded diameter and bounded covering geometry”, Geom. Funct. Anal., 5 (1995), 141–163 | DOI | MR | Zbl
[20] Cheeger J., Rong X., “Existence of polarized $F$-structures on collapsed manifolds with bounded curvature and diameter”, Geom. Funct. Anal., 6 (1996), 411–429 | DOI | MR | Zbl
[21] Chen L., Rong X., Xu S., “Quantitative volume space form rigidity under lower Ricci curvature bound II”, Trans. Amer. Math. Soc., 370 (2018), 4509–4523, arXiv: 1606.05709 | DOI | MR | Zbl
[22] Chen L., Rong X., Xu S., “Quantitative volume space form rigidity under lower Ricci curvature bound I”, J. Differential Geom., 113 (2019), 227–272, arXiv: 1604.06986 | DOI | MR | Zbl
[23] Chen X., Wang B., “Space of Ricci flows I”, Comm. Pure Appl. Math., 65 (2012), 1399–1457, arXiv: 0902.1545 | DOI | MR | Zbl
[24] Chen X., Wang B., “Remarks of weak-compactness along Kähler Ricci flow”, Proceedings of the Seventh International Congress of Chinese Mathematicians, v. II, Adv. Lect. Math. (ALM), 44, Int. Press, Somerville, MA, 2019, 203–233, arXiv: 1605.01374 | MR | Zbl
[25] Chen X., Wang B., “Space of Ricci flows (II) – Part B: Weak compactness of the flows”, J. Differential Geom., 116 (2020), 1–123, arXiv: 1405.6797 | DOI | MR | Zbl
[26] Colding T. H., “Shape of manifolds with positive Ricci curvature”, Invent. Math., 124 (1996), 175–191 | DOI | MR | Zbl
[27] Colding T. H., “Ricci curvature and volume convergence”, Ann. of Math., 145 (1997), 477–501 | DOI | MR | Zbl
[28] Colding T. H., Naber A., “Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications”, Ann. of Math., 176 (2012), 1173–1229, arXiv: 1102.5003 | DOI | MR | Zbl
[29] Dai X., Wang X., Wei G., “On the variational stability of Kähler–Einstein metrics”, Comm. Anal. Geom., 15 (2007), 669–693 | DOI | MR | Zbl
[30] Dai X., Wei G., Ye R., “Smoothing Riemannian metrics with Ricci curvature bounds”, Manuscripta Math., 90 (1996), 49–61, arXiv: dg-ga/9411014 | DOI | MR | Zbl
[31] Fang F., Rong X., “Positive pinching, volume and second Betti number”, Geom. Funct. Anal., 9 (1999), 641–674 | DOI | MR | Zbl
[32] Fang F., Rong X., “The second twisted Betti number and the convergence of collapsing Riemannian manifolds”, Invent. Math., 150 (2002), 61–109 | DOI | MR | Zbl
[33] Fukaya K., “Collapsing of Riemannian manifolds and eigenvalues of Laplace operator”, Invent. Math., 87 (1987), 517–547 | DOI | MR | Zbl
[34] Fukaya K., “Collapsing Riemannian manifolds to ones of lower dimensions”, J. Differential Geom., 25 (1987), 139–156 | DOI | MR | Zbl
[35] Fukaya K., “A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters”, J. Differential Geom., 28 (1988), 1–21 | DOI | MR | Zbl
[36] Fukaya K., “Collapsing Riemannian manifolds to ones with lower dimension. II”, J. Math. Soc. Japan, 41 (1989), 333–356 | DOI | MR | Zbl
[37] Fukaya K., “Metric Riemannian geometry”, Handbook of Differential Geometry, v. II, Elsevier/North-Holland, Amsterdam, 2006, 189–313 | DOI | MR | Zbl
[38] Greene R. E., Wu H., “Lipschitz convergence of Riemannian manifolds”, Pacific J. Math., 131 (1988), 119–141 | DOI | MR | Zbl
[39] Gromov M., “Almost flat manifolds”, J. Differential Geometry, 13 (1978), 231–241 | DOI | MR | Zbl
[40] Gromov M., Structures métriques pour les variétés riemanniennes, Textes Mathématiques, 1, CEDIC, Paris, 1981 | MR
[41] Gross M., Tosatti V., Zhang Y., “Collapsing of abelian fibered Calabi–Yau manifolds”, Duke Math. J., 162 (2013), 517–551 | DOI | MR | Zbl
[42] Gross M., Tosatti V., Zhang Y., “Gromov–Hausdorff collapsing of Calabi–Yau manifolds”, Comm. Anal. Geom., 24 (2016), 93–113, arXiv: 1304.1820 | DOI | MR | Zbl
[43] Gross M., Wilson P. M. H., “Large complex structure limits of $K3$ surfaces”, J. Differential Geom., 55 (2000), 475–546, arXiv: math.DG/0008018 | DOI | MR | Zbl
[44] Hamilton R. S., “Three-manifolds with positive Ricci curvature”, J. Differential Geometry, 17 (1982), 255–306 | DOI | MR | Zbl
[45] Hamilton R. S., “The formation of singularities in the Ricci flow”, Surveys in Differential Geometry (Cambridge, MA, 1993), v. II, Int. Press, Cambridge, MA, 1995, 7–136 | MR | Zbl
[46] Hein H.-J., Sun S., Viaclovsky J., Zhang R., Nilpotent structures and collapsing Ricci-flat metrics on $K3$ surfaces, arXiv: 1807.09367
[47] Hochard R., Short-time existence of the Ricci flow on complete, non-collapsed $3$-manifolds with Ricci curvature bounded from below, arXiv: 1603.08726
[48] Huang H., “Fibrations and stability for compact group actions on manifolds with local bounded Ricci covering geometry”, Front. Math. China, 15 (2020), 69–89, arXiv: 2002.07383 | DOI | MR | Zbl
[49] Huang H., Kong L., Rong X., Xu S., “Collapsed manifolds with Ricci bounded covering geometry”, Trans. Amer. Math. Soc., 373 (2020), 8039–8057, arXiv: 1808.03774 | DOI | MR | Zbl
[50] Huang H., Rong X., Collapsed manifolds with Ricci curvature and local rewinding volume bounded below, in preparation
[51] Huang S., On the long-time behavior of immortal Ricci flows, arXiv: 1908.05410
[52] Huang S., “Notes on Ricci flows with collapsing initial data (I): Distance distortion”, Trans. Amer. Math. Soc., 373 (2020), 4389–4414, arXiv: 1808.07394 | DOI | MR | Zbl
[53] Huang S., Wang B., Rigidity of the first Betti number via Ricci flow smoothing, arXiv: 2004.09762
[54] Huang S., Wang B., Ricci flow smoothing for locally collapsing manifolds, arXiv: 2008.09956
[55] Kapovitch V., Mixed curvature almost flat manifolds, arXiv: 1911.09212
[56] Kapovitch V., Li N., “On dimensions of tangent cones in limit spaces with lower Ricci curvature bounds”, J. Reine Angew. Math., 742 (2018), 263–280, arXiv: 1506.02949 | DOI | MR | Zbl
[57] Kapovitch V., Wilking B., Structure of fundamental groups of manifolds with Ricci curvature bounded below, arXiv: 1105.5955
[58] Kontsevich M., Soibelman Y., “Homological mirror symmetry and torus fibrations”, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, 203–263, arXiv: math.SG/0011041 | DOI | MR | Zbl
[59] Ledrappier F., Wang X., “An integral formula for the volume entropy with applications to rigidity”, J. Differential Geom., 85 (2010), 461–477, arXiv: 0911.0370 | DOI | MR | Zbl
[60] Li Y., SYZ conjecture for Calabi–Yau hypersurfaces in the Fermat family, arXiv: 1912.02360
[61] Lott J., “Some geometric properties of the Bakry–Émery–Ricci tensor”, Comment. Math. Helv., 78 (2003), 865–883, arXiv: math.DG/0211065 | DOI | MR | Zbl
[62] Lott J., “Dimensional reduction and the long-time behavior of Ricci flow”, Comment. Math. Helv., 85 (2010), 485–534, arXiv: 0711.4063 | DOI | MR | Zbl
[63] Lu P., “A local curvature bound in Ricci flow”, Geom. Topol., 14 (2010), 1095–1110, arXiv: 0906.3784 | DOI | MR | Zbl
[64] Molino P., Riemannian foliations, Progress in Mathematics, 73, Birkhäuser Boston, Inc., Boston, MA, 1988 | DOI | MR | Zbl
[65] Naber A., Tian G., “Geometric structures of collapsing Riemannian manifolds II”, J. Reine Angew. Math., 744 (2018), 103–132, arXiv: 0804.2275 | DOI | MR | Zbl
[66] Naber A., Zhang R., “Topology and $\varepsilon$-regularity theorems on collapsed manifolds with Ricci curvature bounds”, Geom. Topol., 20 (2016), 2575–2664, arXiv: 1412.1326 | DOI | MR | Zbl
[67] O'Neill B., “The fundamental equations of a submersion”, Michigan Math. J., 13 (1966), 459–469 | DOI | MR | Zbl
[68] Perelman G., The entropy formula for the Ricci flow and its applications, arXiv: math.DG/0211159
[69] Petersen P., Wei G., Ye R., “Controlled geometry via smoothing”, Comment. Math. Helv., 74 (1999), 345–363, arXiv: dg-ga/9508012 | DOI | MR | Zbl
[70] Petrunin A., Rong X., Tuschmann W., “Collapsing vs. positive pinching”, Geom. Funct. Anal., 9 (1999), 699–735 | DOI | MR | Zbl
[71] Petrunin A., Tuschmann W., “Diffeomorphism finiteness, positive pinching, and second homotopy”, Geom. Funct. Anal., 9 (1999), 736–774 | DOI | MR | Zbl
[72] Rong X., “The existence of polarized $F$-structures on volume collapsed $4$-manifolds”, Geom. Funct. Anal., 3 (1993), 474–501 | DOI | MR | Zbl
[73] Rong X., “The limiting eta invariants of collapsed three-manifolds”, J. Differential Geom., 37 (1993), 535–568 | DOI | MR | Zbl
[74] Rong X., “Rationality of geometric signatures of complete $4$-manifolds”, Invent. Math., 120 (1995), 513–554 | DOI | MR | Zbl
[75] Rong X., “Collapsed manifolds with bounded sectional curvature and applications”, Surveys in Differential Geometry, v. XI, Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, 1–23 | DOI | MR | Zbl
[76] Rong X., “Manifolds of Ricci curvature and local rewinding volume bounded below”, Sci. Sin. Math., 48 (2018), 791–806 | DOI
[77] Rong X., A new proof of Gromov's theorem on almost, arXiv: 1906.03377
[78] Rong X., A generalized Gromov's theorem on almost flat manifolds and applications, in preparation
[79] Ruh E. A., “Almost flat manifolds”, J. Differential Geometry, 17 (1982), 1–14 | DOI | MR | Zbl
[80] Shi W.-X., “Deforming the metric on complete Riemannian manifolds”, J. Differential Geom., 30 (1989), 223–301 | DOI | MR | Zbl
[81] Strominger A., Yau S.-T., Zaslow E., “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479 (1996), 243–259, arXiv: hep-th/9606040 | DOI | MR | Zbl
[82] Tian G., Wang B., “On the structure of almost Einstein manifolds”, J. Amer. Math. Soc., 28 (2015), 1169–1209, arXiv: 1202.2912 | DOI | MR | Zbl
[83] Tosatti V., “Collapsing Calabi–Yau manifolds”, Surv. Differ. Geom., 23 (2020), 305–337, arXiv: 2003.00673 | DOI
[84] Wang B., “The local entropy along Ricci flow Part A: the no-local-collapsing theorems”, Camb. J. Math., 6 (2018), 267–346, arXiv: 1706.08485 | DOI | MR | Zbl
[85] Yano K., Bochner S., Curvature and Betti numbers, Annals of Mathematics Studies, 32, Princeton University Press, Princeton, N.J., 1953 | MR | Zbl