An Analog of Leclerc's Conjecture for Bases of Quantum Cluster Algebras
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dual canonical bases are expected to satisfy a certain (double) triangularity property by Leclerc's conjecture. We propose an analogous conjecture for common triangular bases of quantum cluster algebras. We show that a weaker form of the analogous conjecture is true. Our result applies to the dual canonical bases of quantum unipotent subgroups. It also applies to the $t$-analogs of $q$-characters of simple modules of quantum affine algebras.
Keywords: dual canonical bases, cluster algebras
Mots-clés : Leclerc's conjecture.
@article{SIGMA_2020_16_a121,
     author = {Fan Qin},
     title = {An {Analog} of {Leclerc's} {Conjecture} for {Bases} of {Quantum} {Cluster} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a121/}
}
TY  - JOUR
AU  - Fan Qin
TI  - An Analog of Leclerc's Conjecture for Bases of Quantum Cluster Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a121/
LA  - en
ID  - SIGMA_2020_16_a121
ER  - 
%0 Journal Article
%A Fan Qin
%T An Analog of Leclerc's Conjecture for Bases of Quantum Cluster Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a121/
%G en
%F SIGMA_2020_16_a121
Fan Qin. An Analog of Leclerc's Conjecture for Bases of Quantum Cluster Algebras. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a121/

[1] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III. Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl

[2] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI | MR | Zbl

[3] Cautis S., Williams H., “Cluster theory of the coherent Satake category”, J. Amer. Math. Soc., 32 (2019), 709–778, arXiv: 1801.08111 | DOI | MR | Zbl

[4] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations II: applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790, arXiv: 0904.0676 | DOI | MR | Zbl

[5] Fock V. V., Goncharov A. B., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 2006, 1–211 | DOI | MR | Zbl

[6] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl

[7] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[8] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl

[9] Geiß C., Leclerc B., Schröer J., “Kac–Moody groups and cluster algebras”, Adv. Math., 228 (2011), 329–433, arXiv: 1001.3545 | DOI | MR | Zbl

[10] Geiß C., Leclerc B., Schröer J., “Cluster structures on quantum coordinate rings”, Selecta Math. (N.S.), 19 (2013), 337–397, arXiv: 1104.0531 | DOI | MR | Zbl

[11] Goodearl K., Yakimov M., Integral quantum cluster structures, arXiv: 2003.04434

[12] Goodearl K. R., Yakimov M. T., Quantum cluster algebra structures on quantum nilpotent algebras, Mem. Amer. Math. Soc., 247, 2017, vii+119 pp. | DOI | MR

[13] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR | Zbl

[14] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl

[15] Hernandez D., “Algebraic approach to $q,t$-characters”, Adv. Math., 187 (2004), 1–52, arXiv: math.QA/0212257 | DOI | MR | Zbl

[16] Hernandez D., Leclerc B., “Cluster algebras and quantum affine algebras”, Duke Math. J., 154 (2010), 265–341, arXiv: 0903.1452 | DOI | MR | Zbl

[17] Kang S. J., Kashiwara M., Kim M., Oh S.-J., “Monoidal categorification of cluster algebras”, J. Amer. Math. Soc., 31 (2018), 349–426, arXiv: 1801.05145 | DOI | MR | Zbl

[18] Kashiwara M., “Bases cristallines”, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 277–280 | MR | Zbl

[19] Kashiwara M., “On crystal bases of the $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI | MR | Zbl

[20] Kashiwara M., Kim M., “Laurent phenomenon and simple modules of quiver Hecke algebras”, Compos. Math., 155 (2019), 2263–2295, arXiv: 1811.02237 | DOI | MR | Zbl

[21] Kashiwara M., Kim M., Oh S.-J., Park E., “Monoidal categorification and quantum affine algebras”, Compos. Math., 156 (2020), 1039–1077, arXiv: 1910.08307 | DOI | MR | Zbl

[22] Keller B., “Cluster algebras, quiver representations and triangulated categories”, Triangulated Categories, London Math. Soc. Lecture Note Ser., 375, Cambridge Univetsity Press, Cambridge, 2010, 76–160, arXiv: 0807.1960 | MR | Zbl

[23] Khovanov M., Lauda A. D., “A diagrammatic approach to categorification of quantum groups. I”, Represent. Theory, 13 (2009), 309–347, arXiv: 0803.4121 | DOI | MR | Zbl

[24] Khovanov M., Lauda A. D., “A categorification of quantum ${\rm sl}(n)$”, Quantum Topol., 1 (2010), 1–92, arXiv: 0807.3250 | DOI | MR | Zbl

[25] Kimura Y., “Quantum unipotent subgroup and dual canonical basis”, Kyoto J. Math., 52 (2012), 277–331, arXiv: 1010.4242 | DOI | MR | Zbl

[26] Kimura Y., Qin F., Graded quiver varieties, quantum cluster algebras and dual canonical basis, Adv. Math., 262 (2014), 261–312, arXiv: 1205.2066 | DOI | MR | Zbl

[27] Leclerc B., “Imaginary vectors in the dual canonical basis of $U_q({\mathfrak n})$”, Transform. Groups, 8 (2003), 95–104, arXiv: math.QA/0202148 | DOI | MR | Zbl

[28] Lusztig G., “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl

[29] Lusztig G., “Quivers, perverse sheaves, and quantized enveloping algebras”, J. Amer. Math. Soc., 4 (1991), 365–421 | DOI | MR | Zbl

[30] Lusztig G., “Total positivity in reductive groups”, Lie Theory and Geometry, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, 531–568 | DOI | MR | Zbl

[31] Nakajima H., “Quiver varieties and $t$-analogs of $q$-characters of quantum affine algebras”, Ann. of Math., 160 (2004), 1057–1097, arXiv: math.QA/0105173 | DOI | MR

[32] Nakajima H., “Quiver varieties and cluster algebras”, Kyoto J. Math., 51 (2011), 71–126, arXiv: 0905.0002 | DOI | MR | Zbl

[33] Qin F., “Triangular bases in quantum cluster algebras and monoidal categorification conjectures”, Duke Math. J., 166 (2017), 2337–2442, arXiv: 1501.04085 | DOI | MR | Zbl

[34] Qin F., Bases for upper cluster algebras and tropical points, arXiv: 1902.09507

[35] Qin F., Dual canonical bases and quantum cluster algebras

[36] Rouquier R., 2-Kac–Moody algebras

[37] Tran T., “$F$-polynomials in quantum cluster algebras”, Algebr. Represent. Theory, 14 (2011), 1025–1061, arXiv: 0904.3291 | DOI | MR | Zbl

[38] Varagnolo M., Vasserot E., “Perverse sheaves and quantum Grothendieck rings”, Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., 210, Birkhäuser Boston, Boston, MA, 2003, 345–365 | DOI | MR | Zbl