Mots-clés : Lie algebroids
@article{SIGMA_2020_16_a120,
author = {Ralph L. Klaasse},
title = {Obstructions for {Symplectic} {Lie} {Algebroids}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a120/}
}
Ralph L. Klaasse. Obstructions for Symplectic Lie Algebroids. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a120/
[1] Behrens S., Cavalcanti G. R., Klaasse R. L., “Classification of boundary Lefschetz fibrations over the disc”, Geometry and Physics, v. II, Oxford University Press, Oxford, 2018, 399–418, arXiv: 1706.09207 | DOI | MR | Zbl
[2] Cannas da Silva A., “Fold-forms for four-folds”, J. Symplectic Geom., 8 (2010), 189–203, arXiv: 0909.4067 | DOI | MR | Zbl
[3] Cannas da Silva A., Guillemin V., Woodward C., “On the unfolding of folded symplectic structures”, Math. Res. Lett., 7 (2000), 35–53 | DOI | MR | Zbl
[4] Cavalcanti G. R., “Examples and counter-examples of log-symplectic manifolds”, J. Topol., 10 (2017), 1–21, arXiv: 1303.6420 | DOI | MR | Zbl
[5] Cavalcanti G. R., Gualtieri M., “Stable generalized complex structures”, Proc. Lond. Math. Soc., 116 (2018), 1075–1111, arXiv: 1503.06357 | DOI | MR | Zbl
[6] Cavalcanti G. R., Klaasse R. L., “Fibrations and stable generalized complex structures”, Proc. Lond. Math. Soc., 117 (2018), 1242–1280, arXiv: 1703.03798 | DOI | MR | Zbl
[7] Cavalcanti G. R., Klaasse R. L., “Fibrations and log-symplectic structures”, J. Symplectic Geom., 17 (2019), 603–638, arXiv: 1606.00156 | DOI | MR | Zbl
[8] Godbillon C., Éléments de topologie algébrique, Hermann, Paris, 1971 | MR
[9] Gompf R. E., Stipsicz A. I., $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[10] Gualtieri M., Li S., “Symplectic groupoids of log symplectic manifolds”, Int. Math. Res. Not., 2014 (2014), 3022–3074, arXiv: 1206.3674 | DOI | MR | Zbl
[11] Guillemin V., Miranda E., Pires A. R., “Symplectic and {P}oisson geometry on $b$-manifolds”, Adv. Math., 264 (2014), 864–896, arXiv: 1206.2020 | DOI | MR | Zbl
[12] Guillemin V., Miranda E., Weitsman J., “Desingularizing $b^m$-symplectic structures”, Int. Math. Res. Not., 2019 (2019), 2981–2998, arXiv: 1512.05303 | DOI | MR | Zbl
[13] Hirzebruch F., Hopf H., “Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten”, Math. Ann., 136 (1958), 156–172 | DOI | MR | Zbl
[14] Klaasse R. L., Geometric structures and Lie algebroids, Ph.D. Thesis, Utrecht University, 2017, arXiv: 1712.09560
[15] Klaasse R. L., Poisson structures of divisor-type, arXiv: 1811.04226
[16] Lanius M., “Symplectic, Poisson, and contact geometry on scattering manifolds”, Pacific J. Math. (to appear) , arXiv: 1603.02994
[17] Li S., Constructions of Lie groupoids, Ph.D. Thesis, University of Toronto, 2013 | MR
[18] Mărcuţ I., Osorno Torres B., “Deformations of log-symplectic structures”, J. Lond. Math. Soc., 90 (2014), 197–212, arXiv: 1307.3277 | DOI | MR
[19] Mărcuţ I., Osorno Torres B., “On cohomological obstructions for the existence of log-symplectic structures”, J. Symplectic Geom., 12 (2014), 863–866, arXiv: 1303.6246 | DOI | MR
[20] McDuff D., Salamon D., Introduction to symplectic topology, Oxford Graduate Texts in Mathematics, 3rd ed., Oxford University Press, Oxford, 2017 | DOI | MR
[21] Melrose R. B., The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4, A K Peters, Ltd., Wellesley, MA, 1993 | DOI | MR | Zbl
[22] Melrose R. B., Geometric scattering theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[23] Milnor J. W., Stasheff J. D., Characteristic classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974 | MR | Zbl
[24] Miranda E., Planas A., “Classification of $b^m$-Nambu structures of top degree”, C. R. Math. Acad. Sci. Paris, 356 (2018), 92–96 | DOI | MR | Zbl
[25] Miranda E., Planas A., “Equivariant classification of $b^m$-symplectic surfaces”, Regul. Chaotic Dyn., 23 (2018), 355–371, arXiv: 1607.01748 | DOI | MR | Zbl
[26] Nest R., Tsygan B., “Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems”, Asian J. Math., 5 (2001), 599–635, arXiv: math.QA/9906020 | DOI | MR | Zbl
[27] Scott G., “The geometry of $b^k$ manifolds”, J. Symplectic Geom., 14 (2016), 71–95, arXiv: 1304.3821 | DOI | MR | Zbl
[28] Wu W.T., “Sur les classes caractéristiques des structures fibrées sphériques”, Publ. Inst. Math. Univ. Strasbourg 11, Actualités Sci. Ind., 1183, Hermann Cie, Paris, 1952, 5–89 | MR