Obstructions for Symplectic Lie Algebroids
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several types of generically-nondegenerate Poisson structures can be effectively studied as symplectic structures on naturally associated Lie algebroids. Relevant examples of this phenomenon include log-, elliptic, $b^k$-, scattering and elliptic-log Poisson structures. In this paper we discuss topological obstructions to the existence of such Poisson structures, obtained through the characteristic classes of their associated symplectic Lie algebroids. In particular we obtain the full obstructions for surfaces to carry such Poisson structures.
Keywords: Poisson geometry, log-symplectic, elliptic symplectic.
Mots-clés : Lie algebroids
@article{SIGMA_2020_16_a120,
     author = {Ralph L. Klaasse},
     title = {Obstructions for {Symplectic} {Lie} {Algebroids}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a120/}
}
TY  - JOUR
AU  - Ralph L. Klaasse
TI  - Obstructions for Symplectic Lie Algebroids
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a120/
LA  - en
ID  - SIGMA_2020_16_a120
ER  - 
%0 Journal Article
%A Ralph L. Klaasse
%T Obstructions for Symplectic Lie Algebroids
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a120/
%G en
%F SIGMA_2020_16_a120
Ralph L. Klaasse. Obstructions for Symplectic Lie Algebroids. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a120/

[1] Behrens S., Cavalcanti G. R., Klaasse R. L., “Classification of boundary Lefschetz fibrations over the disc”, Geometry and Physics, v. II, Oxford University Press, Oxford, 2018, 399–418, arXiv: 1706.09207 | DOI | MR | Zbl

[2] Cannas da Silva A., “Fold-forms for four-folds”, J. Symplectic Geom., 8 (2010), 189–203, arXiv: 0909.4067 | DOI | MR | Zbl

[3] Cannas da Silva A., Guillemin V., Woodward C., “On the unfolding of folded symplectic structures”, Math. Res. Lett., 7 (2000), 35–53 | DOI | MR | Zbl

[4] Cavalcanti G. R., “Examples and counter-examples of log-symplectic manifolds”, J. Topol., 10 (2017), 1–21, arXiv: 1303.6420 | DOI | MR | Zbl

[5] Cavalcanti G. R., Gualtieri M., “Stable generalized complex structures”, Proc. Lond. Math. Soc., 116 (2018), 1075–1111, arXiv: 1503.06357 | DOI | MR | Zbl

[6] Cavalcanti G. R., Klaasse R. L., “Fibrations and stable generalized complex structures”, Proc. Lond. Math. Soc., 117 (2018), 1242–1280, arXiv: 1703.03798 | DOI | MR | Zbl

[7] Cavalcanti G. R., Klaasse R. L., “Fibrations and log-symplectic structures”, J. Symplectic Geom., 17 (2019), 603–638, arXiv: 1606.00156 | DOI | MR | Zbl

[8] Godbillon C., Éléments de topologie algébrique, Hermann, Paris, 1971 | MR

[9] Gompf R. E., Stipsicz A. I., $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl

[10] Gualtieri M., Li S., “Symplectic groupoids of log symplectic manifolds”, Int. Math. Res. Not., 2014 (2014), 3022–3074, arXiv: 1206.3674 | DOI | MR | Zbl

[11] Guillemin V., Miranda E., Pires A. R., “Symplectic and {P}oisson geometry on $b$-manifolds”, Adv. Math., 264 (2014), 864–896, arXiv: 1206.2020 | DOI | MR | Zbl

[12] Guillemin V., Miranda E., Weitsman J., “Desingularizing $b^m$-symplectic structures”, Int. Math. Res. Not., 2019 (2019), 2981–2998, arXiv: 1512.05303 | DOI | MR | Zbl

[13] Hirzebruch F., Hopf H., “Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten”, Math. Ann., 136 (1958), 156–172 | DOI | MR | Zbl

[14] Klaasse R. L., Geometric structures and Lie algebroids, Ph.D. Thesis, Utrecht University, 2017, arXiv: 1712.09560

[15] Klaasse R. L., Poisson structures of divisor-type, arXiv: 1811.04226

[16] Lanius M., “Symplectic, Poisson, and contact geometry on scattering manifolds”, Pacific J. Math. (to appear) , arXiv: 1603.02994

[17] Li S., Constructions of Lie groupoids, Ph.D. Thesis, University of Toronto, 2013 | MR

[18] Mărcuţ I., Osorno Torres B., “Deformations of log-symplectic structures”, J. Lond. Math. Soc., 90 (2014), 197–212, arXiv: 1307.3277 | DOI | MR

[19] Mărcuţ I., Osorno Torres B., “On cohomological obstructions for the existence of log-symplectic structures”, J. Symplectic Geom., 12 (2014), 863–866, arXiv: 1303.6246 | DOI | MR

[20] McDuff D., Salamon D., Introduction to symplectic topology, Oxford Graduate Texts in Mathematics, 3rd ed., Oxford University Press, Oxford, 2017 | DOI | MR

[21] Melrose R. B., The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4, A K Peters, Ltd., Wellesley, MA, 1993 | DOI | MR | Zbl

[22] Melrose R. B., Geometric scattering theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[23] Milnor J. W., Stasheff J. D., Characteristic classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974 | MR | Zbl

[24] Miranda E., Planas A., “Classification of $b^m$-Nambu structures of top degree”, C. R. Math. Acad. Sci. Paris, 356 (2018), 92–96 | DOI | MR | Zbl

[25] Miranda E., Planas A., “Equivariant classification of $b^m$-symplectic surfaces”, Regul. Chaotic Dyn., 23 (2018), 355–371, arXiv: 1607.01748 | DOI | MR | Zbl

[26] Nest R., Tsygan B., “Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems”, Asian J. Math., 5 (2001), 599–635, arXiv: math.QA/9906020 | DOI | MR | Zbl

[27] Scott G., “The geometry of $b^k$ manifolds”, J. Symplectic Geom., 14 (2016), 71–95, arXiv: 1304.3821 | DOI | MR | Zbl

[28] Wu W.T., “Sur les classes caractéristiques des structures fibrées sphériques”, Publ. Inst. Math. Univ. Strasbourg 11, Actualités Sci. Ind., 1183, Hermann Cie, Paris, 1952, 5–89 | MR