@article{SIGMA_2020_16_a12,
author = {Yan Zhou},
title = {Cluster {Structures} and {Subfans} in {Scattering} {Diagrams}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a12/}
}
Yan Zhou. Cluster Structures and Subfans in Scattering Diagrams. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a12/
[1] Auroux D., “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91, arXiv: 0706.3207 | MR | Zbl
[2] Carl M., Pumperla M., Siebert B., A tropical view of Landau–Ginzburg models http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf
[3] Dupont G., “An approach to non-simply laced cluster algebras”, J. Algebra, 320 (2008), 1626–1661, arXiv: math.RT/0512043 | DOI | MR | Zbl
[4] Fock V., Goncharov A., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211, arXiv: math.AG/0311149 | DOI | MR | Zbl
[5] Fomin S., Williams L., Zelevinsky A., Introduction to cluster algebras, Chapters 4–5, arXiv: 1707.07190
[6] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[7] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl
[8] Goncharov A., Shen L., “Donaldson–Thomas transformations of moduli spaces of G-local systems”, Adv. Math., 327 (2018), 225–348, arXiv: 1602.06479 | DOI | MR | Zbl
[9] Gross M., “Mirror symmetry for ${\mathbb P}^2$ and tropical geometry”, Adv. Math., 224 (2010), 169–245, arXiv: 0903.1378 | DOI | MR | Zbl
[10] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR | Zbl
[11] Gross M., Hacking P., Keel S., “Mirror symmetry for log Calabi–Yau surfaces I”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 65–168, arXiv: 1106.4977 | DOI | MR | Zbl
[12] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl
[13] Gross M., Siebert B., “From real affine geometry to complex geometry”, Ann. of Math., 174 (2011), 1301–1428, arXiv: math.AG/0703822 | DOI | MR | Zbl
[14] Keel S., Yu T.Y., The Frobenius structure theorem for affine log Calabi–Yau varieties containing a torus, arXiv: 1908.09861
[15] Keller B., Quiver mutation and combinatorial DT-invariants, arXiv: 1709.03143
[16] Kontsevich M., Soibelman Y., “Affine structures and non-Archimedean analytic spaces”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 321–385, arXiv: math.AG/0406564 | DOI | MR | Zbl
[17] Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv: 0811.2435 | MR
[18] Kontsevich M., Soibelman Y., “Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry”, Homological Mirror Symmetry and Tropical Geometry, Lect. Notes Unione Mat. Ital., 15, Springer, Cham, 2014, 197–308 | DOI | MR | Zbl
[19] Lusztig G., “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl
[20] Lusztig G., “Total positivity in reductive groups”, Lie Theory and Geometry, In Honor of B. Kostant, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, 531–568 | DOI | MR | Zbl
[21] Mandel T., Theta bases and log Gromov–Witten invariants of cluster varieties, arXiv: 1903.03042
[22] Matherne J. P., Muller G., “Computing upper cluster algebras”, Int. Math. Res. Not., 2015 (2015), 3121–3149, arXiv: 1307.0579 | DOI | MR | Zbl
[23] Nagao K., “Donaldson–Thomas theory and cluster algebras”, Duke Math. J., 162 (2013), 1313–1367, arXiv: 1002.4884 | DOI | MR | Zbl
[24] Yu T.Y., “Enumeration of holomorphic cylinders in log Calabi–Yau surfaces. I”, Math. Ann., 366 (2016), 1649–1675, arXiv: 1504.01722 | DOI | MR | Zbl
[25] Yu T.Y., Enumeration of holomorphic cylinders in log Calabi–Yau surfaces. II Positivity, integrality and the gluing formula, arXiv: 1608.07651 | MR
[26] Zhou Y., Weyl groups and cluster structures of families of log Calabi–Yau surfaces, arXiv: 1910.05762