Cluster Structures and Subfans in Scattering Diagrams
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give more precise statements of Fock–Goncharov duality conjecture for cluster varieties parametrizing ${\rm SL}_{2}/{\rm PGL}_{2}$-local systems on the once punctured torus. Then we prove these statements. Along the way, using distinct subfans in the scattering diagram, we produce an example of a cluster variety with two non-equivalent cluster structures. To overcome the technical difficulty of infinite non-cluster wall-crossing in the scattering diagram, we introduce quiver folding into the machinery of scattering diagrams and give a quotient construction of scattering diagrams.
Keywords: cluster varieties, Donaldson–Thomas transformations, Markov quiver, non-equivalent cluster structures, scattering diagrams, quiver folding.
@article{SIGMA_2020_16_a12,
     author = {Yan Zhou},
     title = {Cluster {Structures} and {Subfans} in {Scattering} {Diagrams}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a12/}
}
TY  - JOUR
AU  - Yan Zhou
TI  - Cluster Structures and Subfans in Scattering Diagrams
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a12/
LA  - en
ID  - SIGMA_2020_16_a12
ER  - 
%0 Journal Article
%A Yan Zhou
%T Cluster Structures and Subfans in Scattering Diagrams
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a12/
%G en
%F SIGMA_2020_16_a12
Yan Zhou. Cluster Structures and Subfans in Scattering Diagrams. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a12/

[1] Auroux D., “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91, arXiv: 0706.3207 | MR | Zbl

[2] Carl M., Pumperla M., Siebert B., A tropical view of Landau–Ginzburg models http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf

[3] Dupont G., “An approach to non-simply laced cluster algebras”, J. Algebra, 320 (2008), 1626–1661, arXiv: math.RT/0512043 | DOI | MR | Zbl

[4] Fock V., Goncharov A., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211, arXiv: math.AG/0311149 | DOI | MR | Zbl

[5] Fomin S., Williams L., Zelevinsky A., Introduction to cluster algebras, Chapters 4–5, arXiv: 1707.07190

[6] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[7] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl

[8] Goncharov A., Shen L., “Donaldson–Thomas transformations of moduli spaces of G-local systems”, Adv. Math., 327 (2018), 225–348, arXiv: 1602.06479 | DOI | MR | Zbl

[9] Gross M., “Mirror symmetry for ${\mathbb P}^2$ and tropical geometry”, Adv. Math., 224 (2010), 169–245, arXiv: 0903.1378 | DOI | MR | Zbl

[10] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR | Zbl

[11] Gross M., Hacking P., Keel S., “Mirror symmetry for log Calabi–Yau surfaces I”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 65–168, arXiv: 1106.4977 | DOI | MR | Zbl

[12] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl

[13] Gross M., Siebert B., “From real affine geometry to complex geometry”, Ann. of Math., 174 (2011), 1301–1428, arXiv: math.AG/0703822 | DOI | MR | Zbl

[14] Keel S., Yu T.Y., The Frobenius structure theorem for affine log Calabi–Yau varieties containing a torus, arXiv: 1908.09861

[15] Keller B., Quiver mutation and combinatorial DT-invariants, arXiv: 1709.03143

[16] Kontsevich M., Soibelman Y., “Affine structures and non-Archimedean analytic spaces”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 321–385, arXiv: math.AG/0406564 | DOI | MR | Zbl

[17] Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv: 0811.2435 | MR

[18] Kontsevich M., Soibelman Y., “Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry”, Homological Mirror Symmetry and Tropical Geometry, Lect. Notes Unione Mat. Ital., 15, Springer, Cham, 2014, 197–308 | DOI | MR | Zbl

[19] Lusztig G., “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl

[20] Lusztig G., “Total positivity in reductive groups”, Lie Theory and Geometry, In Honor of B. Kostant, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, 531–568 | DOI | MR | Zbl

[21] Mandel T., Theta bases and log Gromov–Witten invariants of cluster varieties, arXiv: 1903.03042

[22] Matherne J. P., Muller G., “Computing upper cluster algebras”, Int. Math. Res. Not., 2015 (2015), 3121–3149, arXiv: 1307.0579 | DOI | MR | Zbl

[23] Nagao K., “Donaldson–Thomas theory and cluster algebras”, Duke Math. J., 162 (2013), 1313–1367, arXiv: 1002.4884 | DOI | MR | Zbl

[24] Yu T.Y., “Enumeration of holomorphic cylinders in log Calabi–Yau surfaces. I”, Math. Ann., 366 (2016), 1649–1675, arXiv: 1504.01722 | DOI | MR | Zbl

[25] Yu T.Y., Enumeration of holomorphic cylinders in log Calabi–Yau surfaces. II Positivity, integrality and the gluing formula, arXiv: 1608.07651 | MR

[26] Zhou Y., Weyl groups and cluster structures of families of log Calabi–Yau surfaces, arXiv: 1910.05762