Counting Collisions in an $N$-Billiard System Using Angles Between Collision Subspaces
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The principal angles between binary collision subspaces in an $N$-billiard system in $d$-dimensional Euclidean space are computed. These angles are computed for equal masses and arbitrary masses. We then provide a bound on the number of collisions in the planar 3-billiard system problem. Comparison of this result with known billiard collision bounds in lower dimensions is discussed.
Keywords: mathematical billiards, angles between subspaces, counting collisions.
@article{SIGMA_2020_16_a118,
     author = {Sean Gasiorek},
     title = {Counting {Collisions} in an $N${-Billiard} {System} {Using} {Angles} {Between} {Collision} {Subspaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a118/}
}
TY  - JOUR
AU  - Sean Gasiorek
TI  - Counting Collisions in an $N$-Billiard System Using Angles Between Collision Subspaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a118/
LA  - en
ID  - SIGMA_2020_16_a118
ER  - 
%0 Journal Article
%A Sean Gasiorek
%T Counting Collisions in an $N$-Billiard System Using Angles Between Collision Subspaces
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a118/
%G en
%F SIGMA_2020_16_a118
Sean Gasiorek. Counting Collisions in an $N$-Billiard System Using Angles Between Collision Subspaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a118/

[1] Albers P., Tabachnikov S., “Introducing symplectic billiards”, Adv. Math., 333 (2018), 822–867, arXiv: 1708.07395 | DOI | MR | Zbl

[2] Bialy M., Mironov A. E., Tabachnikov S., “Wire billiards, the first steps”, Adv. Math., 368 (2020), 107154, 27 pp., arXiv: 1905.13617 | DOI | MR | Zbl

[3] Björck A., Golub G. H., “Numerical methods for computing angles between linear subspaces”, Math. Comp., 27 (1973), 579–594 | DOI | MR | Zbl

[4] Bolotin S. V., “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62, arXiv: 1606.06708 | DOI | MR | Zbl

[5] Bolotin S. V., “Degenerate billiards in celestial mechanics”, Regul. Chaotic Dyn., 22 (2017), 27–53, arXiv: 1612.08907 | DOI | MR | Zbl

[6] Burago D., Ferleger S., Kononenko A., “Uniform estimates on the number of collisions in semi-dispersing billiards”, Ann. of Math., 147 (1998), 695–708 | DOI | MR | Zbl

[7] Burago D., Ferleger S., Kononenko A., “A geometric approach to semi-dispersing billiards”, Hard Ball Systems and the Lorentz Gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 9–27 | DOI | MR | Zbl

[8] Burdzy K., Duarte M., “A lower bound for the number of elastic collisions”, Comm. Math. Phys., 372 (2019), 679–711, arXiv: 1803.00979 | DOI | MR | Zbl

[9] Féjoz J., Knauf A., Montgomery R., “Lagrangian relations and linear point billiards”, Nonlinearity, 30 (2017), 1326–1355, arXiv: 1606.01420 | DOI | MR | Zbl

[10] Galperin G., “Playing pool with $\pi$ (the number $\pi$ from a billiard point of view)”, Regul. Chaotic Dyn., 8 (2003), 375–394 | DOI | MR | Zbl

[11] Knyazev A., Argentati M., “Majorization for changes in angles between subspaces, Ritz values, and graph Laplacian spectra”, SIAM J. Matrix Anal. Appl., 29 (2006), 15–32, arXiv: math.NA/0508591 | DOI | MR | Zbl

[12] Knyazev A., Jujunashvili A., Argentati M., “Angles between infinite dimensional subspaces with applications to the Rayleigh–Ritz and alternating projectors methods”, J. Funct. Anal., 259 (2010), 1323–1345, arXiv: 0705.1023 | DOI | MR | Zbl

[13] Kozlov V. V., Treshchëv D.V., Billiards. A genetic introduction to the dynamics of systems with impacts, Translations of Mathematical Monographs, 89, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl

[14] Montgomery R., “The three-body problem and the shape sphere”, Amer. Math. Monthly, 122 (2015), 299–321, arXiv: 1402.0841 | DOI | MR | Zbl

[15] Murphy T. J., Cohen E. G. D., “Maximum number of collisions among identical hard spheres”, J. Statist. Phys., 71 (1993), 1063–1080 | DOI | MR | Zbl

[16] Murphy T. J., Cohen E. G.D., “On the sequences of collisions among hard spheres in infinite space”, Hard Ball Systems and the Lorentz Gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 29–49 | DOI | MR | Zbl

[17] Sevryuk M. B., “Estimate of the number of collisions of $n$ elastic particles on a line”, Theoret. and Math. Phys., 96 (1993), 818–826 | DOI | MR | Zbl

[18] Sinai Ya.G., “Billiard trajectories in a polyhedral angle”, Russian Math. Surveys, 33 (1978), 219–220 | DOI | MR | Zbl

[19] Tabachnikov S., Geometry and billiards, Student Mathematical Library, 30, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl