@article{SIGMA_2020_16_a118,
author = {Sean Gasiorek},
title = {Counting {Collisions} in an $N${-Billiard} {System} {Using} {Angles} {Between} {Collision} {Subspaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a118/}
}
TY - JOUR AU - Sean Gasiorek TI - Counting Collisions in an $N$-Billiard System Using Angles Between Collision Subspaces JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a118/ LA - en ID - SIGMA_2020_16_a118 ER -
Sean Gasiorek. Counting Collisions in an $N$-Billiard System Using Angles Between Collision Subspaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a118/
[1] Albers P., Tabachnikov S., “Introducing symplectic billiards”, Adv. Math., 333 (2018), 822–867, arXiv: 1708.07395 | DOI | MR | Zbl
[2] Bialy M., Mironov A. E., Tabachnikov S., “Wire billiards, the first steps”, Adv. Math., 368 (2020), 107154, 27 pp., arXiv: 1905.13617 | DOI | MR | Zbl
[3] Björck A., Golub G. H., “Numerical methods for computing angles between linear subspaces”, Math. Comp., 27 (1973), 579–594 | DOI | MR | Zbl
[4] Bolotin S. V., “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62, arXiv: 1606.06708 | DOI | MR | Zbl
[5] Bolotin S. V., “Degenerate billiards in celestial mechanics”, Regul. Chaotic Dyn., 22 (2017), 27–53, arXiv: 1612.08907 | DOI | MR | Zbl
[6] Burago D., Ferleger S., Kononenko A., “Uniform estimates on the number of collisions in semi-dispersing billiards”, Ann. of Math., 147 (1998), 695–708 | DOI | MR | Zbl
[7] Burago D., Ferleger S., Kononenko A., “A geometric approach to semi-dispersing billiards”, Hard Ball Systems and the Lorentz Gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 9–27 | DOI | MR | Zbl
[8] Burdzy K., Duarte M., “A lower bound for the number of elastic collisions”, Comm. Math. Phys., 372 (2019), 679–711, arXiv: 1803.00979 | DOI | MR | Zbl
[9] Féjoz J., Knauf A., Montgomery R., “Lagrangian relations and linear point billiards”, Nonlinearity, 30 (2017), 1326–1355, arXiv: 1606.01420 | DOI | MR | Zbl
[10] Galperin G., “Playing pool with $\pi$ (the number $\pi$ from a billiard point of view)”, Regul. Chaotic Dyn., 8 (2003), 375–394 | DOI | MR | Zbl
[11] Knyazev A., Argentati M., “Majorization for changes in angles between subspaces, Ritz values, and graph Laplacian spectra”, SIAM J. Matrix Anal. Appl., 29 (2006), 15–32, arXiv: math.NA/0508591 | DOI | MR | Zbl
[12] Knyazev A., Jujunashvili A., Argentati M., “Angles between infinite dimensional subspaces with applications to the Rayleigh–Ritz and alternating projectors methods”, J. Funct. Anal., 259 (2010), 1323–1345, arXiv: 0705.1023 | DOI | MR | Zbl
[13] Kozlov V. V., Treshchëv D.V., Billiards. A genetic introduction to the dynamics of systems with impacts, Translations of Mathematical Monographs, 89, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl
[14] Montgomery R., “The three-body problem and the shape sphere”, Amer. Math. Monthly, 122 (2015), 299–321, arXiv: 1402.0841 | DOI | MR | Zbl
[15] Murphy T. J., Cohen E. G. D., “Maximum number of collisions among identical hard spheres”, J. Statist. Phys., 71 (1993), 1063–1080 | DOI | MR | Zbl
[16] Murphy T. J., Cohen E. G.D., “On the sequences of collisions among hard spheres in infinite space”, Hard Ball Systems and the Lorentz Gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 29–49 | DOI | MR | Zbl
[17] Sevryuk M. B., “Estimate of the number of collisions of $n$ elastic particles on a line”, Theoret. and Math. Phys., 96 (1993), 818–826 | DOI | MR | Zbl
[18] Sinai Ya.G., “Billiard trajectories in a polyhedral angle”, Russian Math. Surveys, 33 (1978), 219–220 | DOI | MR | Zbl
[19] Tabachnikov S., Geometry and billiards, Student Mathematical Library, 30, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl