New Pieri Type Formulas for Jack Polynomials and their Applications to Interpolation Jack Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present new Pieri type formulas for Jack polynomials. As an application, we give a new derivation of higher order difference equations for interpolation Jack polynomials originally found by Knop and Sahi. We also propose Pieri formulas for interpolation Jack polynomials and intertwining relations for a kernel function for Jack polynomials.
Keywords: Jack polynomial, Pieri formula, kernel function.
Mots-clés : interpolation Jack polynomial
@article{SIGMA_2020_16_a117,
     author = {Genki Shibukawa},
     title = {New {Pieri} {Type} {Formulas} for {Jack} {Polynomials} and their {Applications} to {Interpolation} {Jack} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a117/}
}
TY  - JOUR
AU  - Genki Shibukawa
TI  - New Pieri Type Formulas for Jack Polynomials and their Applications to Interpolation Jack Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a117/
LA  - en
ID  - SIGMA_2020_16_a117
ER  - 
%0 Journal Article
%A Genki Shibukawa
%T New Pieri Type Formulas for Jack Polynomials and their Applications to Interpolation Jack Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a117/
%G en
%F SIGMA_2020_16_a117
Genki Shibukawa. New Pieri Type Formulas for Jack Polynomials and their Applications to Interpolation Jack Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a117/

[1] Coskun H., Gustafson R. A., “Well-poised Macdonald functions $W_\lambda$ and Jackson coefficients $\omega_\lambda$ on $BC_n$”, Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 127–155, arXiv: math.CO/0412153 | DOI | MR | Zbl

[2] Debiard A., “Polynômes de Tchébychev et de Jacobi dans un espace euclidien de dimension $p$”, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 529–532 | MR | Zbl

[3] Knop F., Sahi S., “Difference equations and symmetric polynomials defined by their zeros”, Int. Math. Res. Not., 1996 (1996), 473–486, arXiv: q-alg/9610017 | DOI | MR | Zbl

[4] Koornwinder T. H., “Okounkov's $BC$-type interpolation Macdonald polynomials and their $q=1$ limit”, Sém. Lothar. Combin., 72 (2015), B72, 27 pp., arXiv: 1408.5993 | MR

[5] Lassalle M., “Coefficients binomiaux généralisés et polynômes de Macdonald”, J. Funct. Anal., 158 (1998), 289–324 | DOI | MR | Zbl

[6] Macdonald I. G., “Schur functions: theme and variations”, Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., 498, University Louis Pasteur, Strasbourg, 1992, 5–39 | DOI | MR

[7] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[8] Okounkov A., “Binomial formula for Macdonald polynomials and applications”, Math. Res. Lett., 4 (1997), 533–553, arXiv: q-alg/9608021 | DOI | MR | Zbl

[9] Okounkov A., “${\rm BC}$-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials”, Transform. Groups, 3 (1998), 181–207, arXiv: q-alg/9611011 | DOI | MR | Zbl

[10] Okounkov A., Olshanski G., “Shifted Jack polynomials, binomial formula, and applications”, Math. Res. Lett., 4 (1997), 69–78, arXiv: q-alg/9608020 | DOI | MR | Zbl

[11] Okounkov A., Olshanski G., “Shifted Schur functions”, St. Petersburg Math. J., 9 (1998), 239–300, arXiv: q-alg/9605042 | MR

[12] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR | Zbl

[13] Sahi S., “The spectrum of certain invariant differential operators associated to a Hermitian symmetric space”, Lie Theory and Geometry, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, 569–576 | DOI | MR | Zbl

[14] Sahi S., “Interpolation, integrality, and a generalization of Macdonald's polynomials”, Int. Math. Res. Not., 1996 (1996), 457–471 | DOI | MR | Zbl

[15] Sekiguchi J., “Zonal spherical functions on some symmetric spaces”, Publ. Res. Inst. Math. Sci., 12 (1977), 455–459 | DOI | MR | Zbl

[16] Stanley R. P., “Some combinatorial properties of Jack symmetric functions”, Adv. Math., 77 (1989), 76–115 | DOI | MR | Zbl

[17] Vilenkin N.Ja., Klimyk A. U., Representation of Lie groups and special functions. Recent advances, Mathematics and its Applications, 316, Kluwer Academic Publishers Group, Dordrecht, 1995 | DOI | MR