A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the construction of positive definite functions on a cartesian product of quasi-metric spaces using generalized Stieltjes and complete Bernstein functions. The results we prove are aligned with a well-established method of T. Gneiting to construct space-time positive definite functions and its many extensions. Necessary and sufficient conditions for the strict positive definiteness of the models are provided when the spaces are metric.
Keywords: positive definite functions, generalized Stieltjes functions, Bernstein functions, Gneiting's model, products of metric spaces.
@article{SIGMA_2020_16_a116,
     author = {Victor S. Barbosa and Valdir A. Menegatto},
     title = {A {Gneiting-Like} {Method} for {Constructing} {Positive} {Definite} {Functions} on {Metric} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a116/}
}
TY  - JOUR
AU  - Victor S. Barbosa
AU  - Valdir A. Menegatto
TI  - A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a116/
LA  - en
ID  - SIGMA_2020_16_a116
ER  - 
%0 Journal Article
%A Victor S. Barbosa
%A Valdir A. Menegatto
%T A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a116/
%G en
%F SIGMA_2020_16_a116
Victor S. Barbosa; Valdir A. Menegatto. A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a116/

[1] Alegría A., Porcu E., Furrer R., Mateu J., “Covariance functions for multivariate Gaussian fields evolving temporally over planet Earth”, Stoch. Environ. Res. Risk Assess., 33 (2019), 1593–1608, arXiv: 1701.06010 | DOI

[2] Apanasovich T., Genton M. G., “Cross-covariance functions for multivariate random fields based on latent dimensions”, Biometrika, 97 (2010), 15–30 | DOI | MR | Zbl

[3] Barbosa V. S., Menegatto V. A., “Strictly positive definite kernels on compact two-point homogeneous spaces”, Math. Inequal. Appl., 19 (2016), 743–756, arXiv: 1505.00591 | DOI | MR | Zbl

[4] Barbosa V. S., Menegatto V. A., “Strict positive definiteness on products of compact two-point homogeneous spaces”, Integral Transforms Spec. Funct., 28 (2017), 56–73, arXiv: 1605.07071 | DOI | MR | Zbl

[5] Berg C., Christensen J. P.R., Ressel P., Harmonic analysis on semigroups. Theory of positive definite and related functions, Graduate Texts in Mathematics, 100, Springer-Verlag, New York, 1984 | DOI | MR | Zbl

[6] Berg C., Peron A. P., Porcu E., “Schoenberg's theorem for real and complex Hilbert spheres revisited”, J. Approx. Theory, 228 (2018), 58–78, arXiv: 1701.07214 | DOI | MR | Zbl

[7] Berg C., Porcu E., “From Schoenberg coefficients to Schoenberg functions”, Constr. Approx., 45 (2017), 217–241, arXiv: 1505.05682 | DOI | MR | Zbl

[8] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl

[9] Gangolli R., “Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters”, Ann. Inst. H. Poincaré Sect. B (N.S.), 3 (1967), 121–226 | MR | Zbl

[10] Gneiting T., “Nonseparable, stationary covariance functions for space-time data”, J. Amer. Statist. Assoc., 97 (2002), 590–600 | DOI | MR | Zbl

[11] Guella J. C., Menegatto V. A., “Strictly positive definite kernels on a product of spheres”, J. Math. Anal. Appl., 435 (2016), 286–301 | DOI | MR | Zbl

[12] Guella J. C., Menegatto V. A., “Schoenberg's theorem for positive definite functions on products: a unifying framework”, J. Fourier Anal. Appl., 25 (2019), 1424–1446 | DOI | MR | Zbl

[13] Guella J. C., Menegatto V. A., Peron A. P., “An extension of a theorem of Schoenberg to products of spheres”, Banach J. Math. Anal., 10 (2016), 671–685, arXiv: 1503.08174 | DOI | MR | Zbl

[14] Guella J. C., Menegatto V. A., Peron A. P., “Strictly positive definite kernels on a product of spheres II”, SIGMA, 12 (2016), 103, 15 pp., arXiv: 1605.09775 | DOI | MR | Zbl

[15] Guella J. C., Menegatto V. A., Peron A. P., “Strictly positive definite kernels on a product of circles”, Positivity, 21 (2017), 329–342, arXiv: 1505.01169 | DOI | MR | Zbl

[16] Horn R. A., Johnson C. R., Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013 | DOI | MR | Zbl

[17] Kapil Y., Pal R., Aggarwal A., Singh M., “Conditionally negative definite functions”, Mediterr. J. Math., 15 (2018), 199, 12 pp. | DOI | MR | Zbl

[18] Koumandos S., Pedersen H. L., “On asymptotic expansions of generalized Stieltjes functions”, Comput. Methods Funct. Theory, 15 (2015), 93–115 | DOI | MR | Zbl

[19] Koumandos S., Pedersen H. L., “On generalized Stieltjes functions”, Constr. Approx., 50 (2019), 129–144, arXiv: 1706.00606 | DOI | MR | Zbl

[20] Menegatto V. A., “Strictly positive definite kernels on the Hilbert sphere”, Appl. Anal., 55 (1994), 91–101 | DOI | MR | Zbl

[21] Menegatto V. A., “Positive definite functions on products of metric spaces via generalized Stieltjes functions”, Proc. Amer. Math. Soc., 148 (2020), 4781–4795 | DOI | MR | Zbl

[22] Menegatto V. A., Oliveira C., Porcu E., “Gneiting class, semi-metric spaces, and isometric embeddings”, Constr. Math. Anal., 3 (2020), 85–95 | DOI | MR | Zbl

[23] Reams R., “Hadamard inverses, square roots and products of almost semidefinite matrices”, Linear Algebra Appl., 288 (1999), 35–43 | DOI | MR | Zbl

[24] Schilling R. L., Song R., Vondraček Z., Bernstein functions. Theory and applications, De Gruyter Studies in Mathematics, 37, 2nd ed., Walter de Gruyter Co., Berlin, 2012 | DOI | MR

[25] Schoenberg I. J., “Metric spaces and completely monotone functions”, Ann. of Math., 39 (1938), 811–841 | DOI | MR

[26] Schoenberg I. J., “Positive definite functions on spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl

[27] Shapiro V. L., Fourier series in several variables with applications to partial differential equations, Chapman Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011 | DOI | MR | Zbl

[28] Sokal A. D., “Real-variables characterization of generalized Stieltjes functions”, Expo. Math., 28 (2010), 179–185, arXiv: 0902.0065 | DOI | MR | Zbl

[29] Wells J. H., Williams L. R., Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, 84, Springer-Verlag, New York – Heidelberg, 1975 | DOI | MR | Zbl

[30] Wendland H., Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, 17, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[31] Widder D. V., “The Stieltjes transform”, Trans. Amer. Math. Soc., 43 (1938), 7–60 | DOI | MR

[32] Widder D. V., The Laplace Transform, Princeton Mathematical Series, 6, Princeton University Press, Princeton, N. J., 1941 | MR | Zbl