@article{SIGMA_2020_16_a115,
author = {Masayuki Fukuda and Yusuke Ohkubo and Jun'ichi Shiraishi},
title = {Non-Stationary {Ruijsenaars} {Functions} for $\kappa=t^{-1/N}$ and {Intertwining} {Operators} of {Ding{\textendash}Iohara{\textendash}Miki} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a115/}
}
TY - JOUR
AU - Masayuki Fukuda
AU - Yusuke Ohkubo
AU - Jun'ichi Shiraishi
TI - Non-Stationary Ruijsenaars Functions for $\kappa=t^{-1/N}$ and Intertwining Operators of Ding–Iohara–Miki Algebra
JO - Symmetry, integrability and geometry: methods and applications
PY - 2020
VL - 16
UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a115/
LA - en
ID - SIGMA_2020_16_a115
ER -
%0 Journal Article
%A Masayuki Fukuda
%A Yusuke Ohkubo
%A Jun'ichi Shiraishi
%T Non-Stationary Ruijsenaars Functions for $\kappa=t^{-1/N}$ and Intertwining Operators of Ding–Iohara–Miki Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a115/
%G en
%F SIGMA_2020_16_a115
Masayuki Fukuda; Yusuke Ohkubo; Jun'ichi Shiraishi. Non-Stationary Ruijsenaars Functions for $\kappa=t^{-1/N}$ and Intertwining Operators of Ding–Iohara–Miki Algebra. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a115/
[1] Alba V. A., Fateev V. A., Litvinov A. V., Tarnopolskiy G. M., “On combinatorial expansion of the conformal blocks arising from AGT conjecture”, Lett. Math. Phys., 98 (2011), 33–64, arXiv: 1012.1312 | DOI | MR | Zbl
[2] Alday L. F., Gaiotto D., Tachikawa Y., “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl
[3] Atai F., Langmann E., “Series solutions of the non-stationary Heun equation”, SIGMA, 14 (2018), 011, 32 pp., arXiv: 1609.02525 | DOI | MR | Zbl
[4] Atai F., Langmann E., “Exact solutions by integrals of the non-stationary elliptic Calogero–Sutherland equation”, J. Integrable Syst., 5 (2020), xyaa001, 26 pp., arXiv: 1908.00529 | DOI | MR | Zbl
[5] Awata H., Feigin B., Hoshino A., Kanai M., Shiraishi J., Yanagida S., “Notes on Ding–Iohara algebra and AGT conjecture”, RIMS Kōkyūroku, 1765 (2011), 12–32, arXiv: 1106.4088
[6] Awata H., Feigin B., Shiraishi J., “Quantum algebraic approach to refined topological vertex”, J. High Energy Phys., 2012:3 (2012), 041, 35 pp., arXiv: 1112.6074 | DOI | MR | Zbl
[7] Awata H., Fujino H., Ohkubo Y., “Crystallization of deformed Virasoro algebra, Ding–Iohara–Miki algebra, and 5D AGT correspondence”, J. Math. Phys., 58 (2017), 071704, 25 pp., arXiv: 1512.08016 | DOI | MR | Zbl
[8] Awata H., Kanno H., “Refined BPS state counting from Nekrasov's formula and Macdonald functions”, Internat. J. Modern Phys. A, 24 (2009), 2253–2306, arXiv: 0805.0191 | DOI | MR | Zbl
[9] Awata H., Kanno H., “Changing the preferred direction of the refined topological vertex”, J. Geom. Phys., 64 (2013), 91–110, arXiv: 0903.5383 | DOI | MR | Zbl
[10] Awata H., Matsuo Y., Odake S., Shiraishi J., “Collective field theory, Calogero–Sutherland model and generalized matrix models”, Phys. Lett. B, 347 (1995), 49–55, arXiv: hep-th/9411053 | DOI | MR | Zbl
[11] Braverman A., Finkelberg M., Shiraishi J., “Macdonald polynomials, Laumon spaces and perverse coherent sheaves”, Perspectives in Representation Theory, Contemp. Math., 610, Amer. Math. Soc., Providence, RI, 2014, 23–41, arXiv: 1206.3131 | DOI | MR | Zbl
[12] Carlsson E., Nekrasov N., Okounkov A., “Five dimensional gauge theories and vertex operators”, Mosc. Math. J., 14 (2014), 39–61, arXiv: 1308.2465 | DOI | MR | Zbl
[13] Ding J., Iohara K., “Generalization of Drinfeld quantum affine algebras”, Lett. Math. Phys., 41 (1997), 181–193, arXiv: q-alg/9608002 | DOI | MR | Zbl
[14] Feigin B., Feigin E., Jimbo M., Miwa T., Mukhin E., “Quantum continuous $\mathfrak{gl}_\infty$: semiinfinite construction of representations”, Kyoto J. Math., 51 (2011), 337–364, arXiv: 1002.3100 | DOI | MR | Zbl
[15] Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S., “A commutative algebra on degenerate $\mathbb{CP}^1$ and Macdonald polynomials”, J. Math. Phys., 50 (2009), 095215, 42 pp., arXiv: 0904.2291 | DOI | MR | Zbl
[16] Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S., “Kernel function and quantum algebra”, RIMS Kōkyūroku, 1689 (2010), 133–152, arXiv: 1002.2485
[17] Feigin B., Kojima T., Shiraishi J., Watanabe H., The integrals of motion for the deformed Virasoro algebra, arXiv: 0705.0427
[18] Feigin B., Kojima T., Shiraishi J., Watanabe H., The integrals of motion for the deformed $W$-algebra $W_{q,t}(\hat{sl}_N)$, arXiv: 0705.0627
[19] Feigin B. L., Tsymbaliuk A. I., “Equivariant $K$-theory of Hilbert schemes via shuffle algebra”, Kyoto J. Math., 51 (2011), 831–854, arXiv: 0904.1679 | DOI | MR | Zbl
[20] Felder G., Varchenko A., “Hypergeometric theta functions and elliptic Macdonald polynomials”, Int. Math. Res. Not., 2004 (2004), 1037–1055, arXiv: math.QA/0309452 | DOI | MR | Zbl
[21] Fukuda M., Ohkubo Y., Shiraishi J., “Generalized Macdonald functions on Fock tensor spaces and duality formula for changing preferred direction”, Comm. Math. Phys., 380 (2020), 1–70, arXiv: 1903.05905 | DOI | MR | Zbl
[22] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[23] Hausel T., Rodriguez-Villegas F., “Mixed Hodge polynomials of character varieties”, Invent. Math., 174 (2008), 555–624, arXiv: math.AG/0612668 | DOI | MR | Zbl
[24] Iqbal A., Kozçaz C., Vafa C., “The refined topological vertex”, J. High Energy Phys., 2009:10 (2009), 069, 58 pp., arXiv: hep-th/0701156 | DOI | MR
[25] Kojima T., Shiraishi J., “The integrals of motion for the deformed $W$-algebra $W_{q,t}(\widehat{gl_N})$. II Proof of the commutation relations”, Comm. Math. Phys., 283 (2008), 795–851, arXiv: 0709.2305 | DOI | MR | Zbl
[26] Langmann E., Noumi M., Shiraishi J., “Basic properties of non-stationary Ruijsenaars functions”, SIGMA, 16 (2020), 105, 26 pp., arXiv: 2006.07171 | DOI | MR
[27] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, 2nd ed., The Clarendon Press, Oxford University Press, New York, 2015 | MR | Zbl
[28] Miki K., “A $(q,\gamma)$ analog of the $W_{1+\infty}$ algebra”, J. Math. Phys., 48 (2007), 123520, 35 pp. | DOI | MR | Zbl
[29] Morozov A., Smirnov A., “Towards the proof of AGT relations with the help of the generalized Jack polynomials”, Lett. Math. Phys., 104 (2014), 585–612, arXiv: 1307.2576 | DOI | MR | Zbl
[30] Nedelin A., Pasquetti S., Zenkevich Y., “$T[{\rm SU}(N)]$ duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences”, J. High Energy Phys., 2019:2 (2019), 176, 57 pp., arXiv: 1712.08140 | DOI | MR | Zbl
[31] Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars–Macdonald $q$-difference operators, arXiv: 1206.5364
[32] Ohkubo Y., “Generalized Jack and Macdonald polynomials arising from AGT conjecture”, J. Phys. Conf. Ser., 804 (2017), 012036, 7 pp., arXiv: 1404.5401 | DOI
[33] Ohkubo Y., “Kac determinant and singular vector of the level $N$ representation of Ding–Iohara–Miki algebra”, Lett. Math. Phys., 109 (2019), 33–60, arXiv: 1706.02243 | DOI | MR | Zbl
[34] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR
[35] Rains E. M., Warnaar S. O., “A Nekrasov–Okounkov formula for Macdonald polynomials”, J. Algebraic Combin., 48 (2018), 1–30, arXiv: 1606.04613 | DOI | MR | Zbl
[36] Ruijsenaars S. N. M., “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Comm. Math. Phys., 110 (1987), 191–213 | DOI | MR | Zbl
[37] Ruijsenaars S. N. M., “Zero-eigenvalue eigenfunctions for differences of elliptic relativistic Calogero–Moser Hamiltonians”, Theoret. and Math. Phys., 146 (2006), 25–33 | DOI | MR | Zbl
[38] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. I The eigenfunction identities”, Comm. Math. Phys., 286 (2009), 629–657 | DOI | MR | Zbl
[39] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. II The $A_{N-1}$ case: first steps”, Comm. Math. Phys., 286 (2009), 659–680 | DOI | MR | Zbl
[40] Shiraishi J., A commutative family of integral transformations and basic hypergeometric Series. I. Eigenfunctions, arXiv: math.QA/0501251
[41] Shiraishi J., A commutative family of integral transformations and basic hypergeometric series. II. Eigenfunctions and quasi-eigenfunctions, arXiv: math.QA/0502228
[42] Shiraishi J., “A conjecture about raising operators for Macdonald polynomials”, Lett. Math. Phys., 73 (2005), 71–81, arXiv: math.QA/0503727 | DOI | MR | Zbl
[43] Shiraishi J., “A family of integral transformations and basic hypergeometric series”, Comm. Math. Phys., 263 (2006), 439–460 | DOI | MR | Zbl
[44] Shiraishi J., “Affine screening operators, affine Laumon spaces and conjectures concerning non-stationary Ruijsenaars functions”, J. Integrable Syst., 4 (2019), xyz010, 30 pp., arXiv: 1903.07495 | DOI | MR
[45] Shiraishi J., Kubo H., Awata H., Odake S., “A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions”, Lett. Math. Phys., 38 (1996), 33–51, arXiv: q-alg/9507034 | DOI | MR | Zbl
[46] Zenkevich Y., Higgsed network calculus, arXiv: 1812.11961