@article{SIGMA_2020_16_a114,
author = {Yuri B. Chernyakov and Georgy I. Sharygin and Alexander S. Sorin and Dmitry V. Talalaev},
title = {The {Full} {Symmetric} {Toda} {Flow} and {Intersections} of {Bruhat} {Cells}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a114/}
}
TY - JOUR AU - Yuri B. Chernyakov AU - Georgy I. Sharygin AU - Alexander S. Sorin AU - Dmitry V. Talalaev TI - The Full Symmetric Toda Flow and Intersections of Bruhat Cells JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a114/ LA - en ID - SIGMA_2020_16_a114 ER -
%0 Journal Article %A Yuri B. Chernyakov %A Georgy I. Sharygin %A Alexander S. Sorin %A Dmitry V. Talalaev %T The Full Symmetric Toda Flow and Intersections of Bruhat Cells %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a114/ %G en %F SIGMA_2020_16_a114
Yuri B. Chernyakov; Georgy I. Sharygin; Alexander S. Sorin; Dmitry V. Talalaev. The Full Symmetric Toda Flow and Intersections of Bruhat Cells. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a114/
[1] Bloch A. M., Brockett R. W., Ratiu T. S., “Completely integrable gradient flows”, Comm. Math. Phys., 147 (1992), 57–74 | DOI | MR | Zbl
[2] Bloch A. M., Gekhtman M. I., “Hamiltonian and gradient structures in the Toda flows”, J. Geom. Phys., 27 (1998), 230–248 | DOI | MR | Zbl
[3] Brion M., Lakshmibai V., “A geometric approach to standard monomial theory”, Represent. Theory, 7 (2003), 651–680, arXiv: math.AG/0111054 | DOI | MR | Zbl
[4] Casian L., Kodama Y., “Toda lattice, cohomology of compact Lie groups and finite Chevalley groups”, Invent. Math., 165 (2006), 163–208, arXiv: math.AT/0504329 | DOI | MR | Zbl
[5] Chernyakov Yu.B., Sharygin G. I., Sorin A. S., “Bruhat order in full symmetric Toda system”, Comm. Math. Phys., 330 (2014), 367–399, arXiv: 1212.4803 | DOI | MR | Zbl
[6] Chernyakov Yu.B., Sharygin G. I., Sorin A. S., “Bruhat order in the Toda system on $\mathfrak{so}(2,4)$: an example of non-split real form”, J. Geom. Phys., 136 (2019), 45–51, arXiv: 1712.0913 | DOI | MR | Zbl
[7] De Mari F., Pedroni M., “Toda flows and real Hessenberg manifolds”, J. Geom. Anal., 9 (1999), 607–625 | DOI | MR | Zbl
[8] Deodhar V. V., “On some geometric aspects of Bruhat orderings. I A finer decomposition of Bruhat cells”, Invent. Math., 79 (1985), 499–511 | DOI | MR | Zbl
[9] Faybusovich L., “Toda flows and isospectral manifolds”, Proc. Amer. Math. Soc., 115 (1992), 837–847 | DOI | MR | Zbl
[10] Fulton W., Young tableaux with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[11] Sorin A. S., Chernyakov Yu.B., Sharygin G. I., “Phase portrait of the full symmetric Toda system on rank-2 groups”, Theoret. and Math. Phys., 193 (2017), 1574–1592, arXiv: 1512.05821 | DOI | MR | Zbl