Mots-clés : optimal transport
@article{SIGMA_2020_16_a113,
author = {Yifan Guo},
title = {The {Measure} {Preserving} {Isometry} {Groups} of {Metric} {Measure} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a113/}
}
Yifan Guo. The Measure Preserving Isometry Groups of Metric Measure Spaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a113/
[1] Ambrosio L., Gigli N., Mondino A., Rajala T., “Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure”, Trans. Amer. Math. Soc., 367 (2015), 4661–4701, arXiv: 1207.4924 | DOI | MR | Zbl
[2] Ambrosio L., Gigli N., Savaré G., Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl
[3] Ambrosio L., Gigli N., Savaré G., “Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below”, Invent. Math., 195 (2014), 289–391, arXiv: 1106.2090 | DOI | MR | Zbl
[4] Ambrosio L., Gigli N., Savaré G., “Metric measure spaces with Riemannian Ricci curvature bounded from below”, Duke Math. J., 163 (2014), 1405–1490, arXiv: 1109.0222 | DOI | MR | Zbl
[5] Bagaev A. V., Zhukova N. I., “The isometry groups of Riemannian orbifolds”, Siberian Math. J., 48 (2007), 579–592 | DOI | MR | Zbl
[6] Bakry D., Bolley F., Gentil I., “The Li–Yau inequality and applications under a curvature-dimension condition”, Ann. Inst. Fourier (Grenoble), 67 (2017), 397–421, arXiv: 1412.5165 | DOI | MR | Zbl
[7] Bakry D., Émery M., “Diffusions hypercontractives”, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR
[8] Bochner S., “Vector fields and Ricci curvature”, Bull. Amer. Math. Soc., 52 (1946), 776–797 | DOI | MR | Zbl
[9] Cavalletti F., Mondino A., “Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds”, Invent. Math., 208 (2017), 803–849, arXiv: 1502.06465 | DOI | MR | Zbl
[10] Dai X., Shen Z. M., Wei G., “Negative Ricci curvature and isometry group”, Duke Math. J., 76 (1994), 59–73 | DOI | MR | Zbl
[11] Deng S., Hou Z., “The group of isometries of a Finsler space”, Pacific J. Math., 207 (2002), 149–155 | DOI | MR | Zbl
[12] Gao L. Z., Yau S.-T., “The existence of negatively Ricci curved metrics on three-manifolds”, Invent. Math., 85 (1986), 637–652 | DOI | MR | Zbl
[13] Garofalo N., Mondino A., “Li–Yau and Harnack type inequalities in $\mathsf{RCD}^*(K,N)$ metric measure spaces”, Nonlinear Anal., 95 (2014), 721–734, arXiv: 1306.0494 | DOI | MR | Zbl
[14] Gigli N., The splitting theorem in non-smooth context, arXiv: 1302.5555
[15] Gigli N., On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc., 236, 2015, vi+91 pp., arXiv: 1205.6622 | DOI | MR
[16] Gromov M., “Sign and geometric meaning of curvature”, Rend. Sem. Mat. Fis. Milano, 61 (1991), 9–123 | DOI | MR | Zbl
[17] Guijarro L., Santos-Rodríguez J., “On the isometry group of $\mathsf{RCD}^*(K,N)$-spaces”, Manuscripta Math., 158 (2019), 441–461 | DOI | MR | Zbl
[18] Huber H., “Über die Isometriegruppe einer kompakten Mannigfaltigkeiten negativer Krümmung”, Helv. Phys. Acta, 45 (1972), 277–288 | MR
[19] Hurwitz A., “Ueber algebraische Gebilde mit eindeutigen Transformationen in sich”, Math. Ann., 41 (1892), 403–442 | DOI | MR
[20] Im Hof H.-C., “Über die Isometriegruppe bei kompakten Mannigfaltigkeiten negativer Krümmung”, Comment. Math. Helv., 48 (1973), 14–30 | DOI | MR | Zbl
[21] Katsuda A., “The isometry groups of compact manifolds with negative Ricci curvature”, Proc. Amer. Math. Soc., 104 (1988), 587–588 | DOI | MR | Zbl
[22] Katsuda A., Kobayashi T., “The isometry groups of compact manifolds with almost negative Ricci curvature”, Tohoku Math. J., 70 (2018), 391–400 | DOI | MR | Zbl
[23] Lohkamp J., “Metrics of negative Ricci curvature”, Ann. of Math., 140 (1994), 655–683 | DOI | MR | Zbl
[24] Lott J., Villani C., “Ricci curvature for metric-measure spaces via optimal transport”, Ann. of Math., 169 (2009), 903–991, arXiv: math.DG/0412127 | DOI | MR | Zbl
[25] Maeda M., “The isometry groups of compact manifolds with non-positive curvature”, Proc. Japan Acad., 51 (1975), 790–794 | DOI | MR
[26] Profeta A., “The sharp Sobolev inequality on metric measure spaces with lower Ricci curvature bounds”, Potential Anal., 43 (2015), 513–529 | DOI | MR | Zbl
[27] Rong X., “A Bochner theorem and applications”, Duke Math. J., 91 (1998), 381–392 | DOI | MR | Zbl
[28] Sosa G., “The isometry group of an $\mathsf{RCD}^*$ space is Lie”, Potential Anal., 49 (2018), 267–286, arXiv: 1609.02098 | DOI | MR | Zbl
[29] Sturm K.-T., “On the geometry of metric measure spaces. I”, Acta Math., 196 (2006), 65–131 | DOI | MR | Zbl
[30] Sturm K.-T., “On the geometry of metric measure spaces. II”, Acta Math., 196 (2006), 133–177 | DOI | MR | Zbl
[31] Sturm K.-T., “Remarks about synthetic upper Ricci bounds for metric measure spaces”, arXiv: 1711.01707 | MR
[32] van Limbeek W., “Symmetry gaps in Riemannian geometry and minimal orbifolds”, J. Differential Geom., 105 (2017), 487–517, arXiv: 1405.2291 | DOI | MR | Zbl
[33] Villani C., Optimal transport: old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[34] Yamaguchi T., “The isometry groups of manifolds of nonpositive curvature with finite volume”, Math. Z., 189 (1985), 185–192 | DOI | MR | Zbl
[35] Zhang H. C., Zhu X. P., “Local Li–Yau's estimates on $\mathsf{RCD}^*{(K,N)}$ metric measure spaces”, Calc. Var. Partial Differential Equations, 55 (2016), 93, 30 pp., arXiv: 1602.05347 | DOI | MR
[36] Zhong T., Zhong C., “Bochner technique in real Finsler manifolds”, Acta Math. Sci. Ser. B, 23 (2003), 165–177 | DOI | MR | Zbl