Yangian of the General Linear Lie Superalgebra
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove several basic properties of the Yangian of the Lie superalgebra $\mathfrak{gl}_{M|N}$.
Keywords: Berezinian, Hopf superalgebra, Yangian.
@article{SIGMA_2020_16_a111,
     author = {Maxim Nazarov},
     title = {Yangian of the {General} {Linear} {Lie} {Superalgebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a111/}
}
TY  - JOUR
AU  - Maxim Nazarov
TI  - Yangian of the General Linear Lie Superalgebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a111/
LA  - en
ID  - SIGMA_2020_16_a111
ER  - 
%0 Journal Article
%A Maxim Nazarov
%T Yangian of the General Linear Lie Superalgebra
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a111/
%G en
%F SIGMA_2020_16_a111
Maxim Nazarov. Yangian of the General Linear Lie Superalgebra. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a111/

[1] Berezin F. A., Introduction to superanalysis, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Co., Dordrecht, 1987 | DOI | MR | Zbl

[2] Cherednik I. V., “A new interpretation of Gelfand–Tzetlin bases”, Duke Math. J., 54 (1987), 563–577 | DOI | MR | Zbl

[3] Gow L., “On the Yangian $Y(\mathfrak{gl}_{m|n})$ and its quantum Berezinian”, Czechoslovak J. Phys., 55 (2005), 1415–1420, arXiv: math.QA/0501041 | DOI | MR

[4] Gow L., “Gauss decomposition of the Yangian $Y({\mathfrak{gl}}_{m|n})$”, Comm. Math. Phys., 276 (2007), 799–825, arXiv: math.QA/0605219 | DOI | MR | Zbl

[5] Milnor J. W., Moore J. C., “On the structure of Hopf algebras”, Ann. of Math., 81 (1965), 211–264 | DOI | MR | Zbl

[6] Molev A., Nazarov M., Olshanski G., “Yangians and classical Lie algebras”, Russian Math. Surveys, 51 (1996), 205–282, arXiv: hep-th/9409025 | DOI | MR | Zbl

[7] Nazarov M., “Yangian of the queer Lie superalgebra”, Comm. Math. Phys., 208 (1999), 195–223, arXiv: math.QA/9902146 | DOI | MR | Zbl

[8] Nazarov M. L., “Quantum Berezinian and the classical Capelli identity”, Lett. Math. Phys., 21 (1991), 123–131 | DOI | MR | Zbl

[9] Tsymbaliuk A., “Shuffle algebra realizations of type $A$ super Yangians and quantum affine superalgebras for all Cartan data”, Lett. Math. Phys., 110 (2020), 2083–2111, arXiv: 1909.13732 | DOI | MR | Zbl