@article{SIGMA_2020_16_a110,
author = {Eric M. Rains},
title = {Elliptic {Double} {Affine} {Hecke} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a110/}
}
Eric M. Rains. Elliptic Double Affine Hecke Algebras. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a110/
[1] Artin M., Tate J., Van den Bergh M., “Some algebras associated to automorphisms of elliptic curves”, The Grothendieck Festschrift, v. I, Progr. Math., 86, eds. P. Cartier, L. Illusie, N.M. Katz, G. Laumon, Yu.I. Manin, Birkhäuser Boston, Boston, MA, 2007, 33–85 | DOI | MR
[2] Artin M., Van den Bergh M., “Twisted homogeneous coordinate rings”, J. Algebra, 133 (1990), 249–271 | DOI | MR | Zbl
[3] Bondal A. I., Polishchuk A. E., “Homological properties of associative algebras: the method of helices”, Izv. Math., 42 (1994), 219–260 | DOI | MR
[4] Brion M., “Stable properties of plethysm: on two conjectures of Foulkes”, Manuscripta Math., 80 (1993), 347–371 | DOI | MR | Zbl
[5] Conway J. H., Sloane N. J. A., “Low-dimensional lattices. II Subgroups of ${\rm GL}(n,{\mathbb Z})$”, Proc. Roy. Soc. London Ser. A, 419 (1988), 29–68 | DOI | MR | Zbl
[6] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR | Zbl
[7] van Diejen J. F., “Difference Calogero–Moser systems and finite Toda chains”, J. Math. Phys., 36 (1995), 1299–1323 | DOI | MR | Zbl
[8] Eichler M., Zagier D., The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser Boston, Inc., Boston, MA, 1985 | DOI | MR | Zbl
[9] Ellingsrud G., Göttsche L., Lehn M., “On the cobordism class of the Hilbert scheme of a surface”, J. Algebraic Geom., 10 (2001), 81–100, arXiv: math.AG/9904095 | MR | Zbl
[10] Fulton W., Olsson M., “The Picard group of ${\mathcal M}_{1,1}$”, Algebra Number Theory, 4 (2010), 87–104, arXiv: 0704.2214 | DOI | MR | Zbl
[11] Ginzburg V., Kapranov M., Vasserot E., “Residue construction of Hecke algebras”, Adv. Math., 128 (1997), 1–19, arXiv: alg-geom/9512017 | DOI | MR | Zbl
[12] Gordon I., Stafford J. T., “Rational Cherednik algebras and Hilbert schemes”, Adv. Math., 198 (2005), 222–274, arXiv: math.RA/0407516 | DOI | MR | Zbl
[13] Gritsenko V., “Modular forms and moduli spaces of abelian and $K3$ surfaces”, St. Petersburg Math. J., 6 (1995), 1179–1208 | MR
[14] Gritsenko V. A., “Fourier–Jacobi functions in $n$ variables”, J. Soviet Math., 53 (1991), 243–252 | DOI | MR
[15] Katz N. M., Mazur B., Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, 108, Princeton University Press, Princeton, NJ, 1985 | DOI | MR | Zbl
[16] Komori Y., Hikami K., “Quantum integrability of the generalized elliptic Ruijsenaars models”, J. Phys. A: Math. Gen., 30 (1997), 4341–4364 | DOI | MR | Zbl
[17] Krieg A., “Jacobi forms of several variables and the Maaßspace”, J. Number Theory, 56 (1996), 242–255 | DOI | MR | Zbl
[18] Looijenga E., “Root systems and elliptic curves”, Invent. Math., 38 (1976), 17–32 | DOI | MR | Zbl
[19] Lusztig G., “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Analysis and Topology on Singular Spaces (Luminy, 1981), v. II, III, Astérisque, 101, Soc. Math. France, Paris, 1983, 208–229 | MR
[20] Nevins T. A., Stafford J. T., “Sklyanin algebras and Hilbert schemes of points”, Adv. Math., 210 (2007), 405–478, arXiv: math.AG/0310045 | DOI | MR | Zbl
[21] Oblomkov A., “Double affine Hecke algebras of rank 1 and affine cubic surfaces”, Int. Math. Res. Not., 2004 (2004), 877–912, arXiv: math.RT/0306393 | DOI | MR | Zbl
[22] Polishchuk A., Abelian varieties, theta functions and the Fourier transform, Cambridge Tracts in Mathematics, 153, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[23] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR | Zbl
[24] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR | Zbl
[25] Rains E. M., Generalized Hitchin systems on rational surfaces, arXiv: 1307.4033
[26] Rains E. M., The noncommutative geometry of elliptic difference equations, arXiv: 1607.08876
[27] Rains E. M., “Multivariate quadratic transformations and the interpolation kernel”, SIGMA, 14 (2018), 019, 69 pp., arXiv: 1408.0305 | DOI | MR | Zbl
[28] Rains E. M., Ruijsenaars S., “Difference operators of Sklyanin and van Diejen type”, Comm. Math. Phys., 320 (2013), 851–889, arXiv: 1203.0042 | DOI | MR | Zbl
[29] Rosengren H., “Elliptic hypergeometric functions”, Lectures on Orthogonal Polynomials and Special Functions, Cambridge University Press, Cambridge (to appear) | MR
[30] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl
[31] Saito K., “Extended affine root systems. II Flat invariants”, Publ. Res. Inst. Math. Sci., 26 (1990), 15–78 | DOI | MR | Zbl
[32] Sekiguchi T., “On projective normality of Abelian varieties. II”, J. Math. Soc. Japan, 29 (1977), 709–727 | DOI | MR | Zbl
[33] Shioda T., “On elliptic modular surfaces”, J. Math. Soc. Japan, 24 (1972), 20–59 | DOI | MR | Zbl
[34] Silverman J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, 2nd ed., Springer, Dordrecht, 2009 | DOI | MR | Zbl
[35] Spiridonov V. P., Warnaar S. O., “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132, arXiv: math.CA/0411044 | DOI | MR | Zbl
[36] Stembridge J. R., “Tight quotients and double quotients in the Bruhat order”, Electron. J. Combin., 11 (2005), 14, 41 pp. | DOI | MR
[37] Van den Bergh M., “A translation principle for the four-dimensional Sklyanin algebras”, J. Algebra, 184 (1996), 435–490 | DOI | MR | Zbl
[38] Van den Bergh M., “Non-commutative $\mathbb{P}^1$-bundles over commutative schemes”, Trans. Amer. Math. Soc., 364 (2012), 6279–6313, arXiv: math.RA/0102005 | DOI | MR | Zbl