@article{SIGMA_2020_16_a11,
author = {Dave Witte Morris},
title = {Quasi-Isometric {Bounded} {Generation} by ${\mathbb Q}${-Rank-One} {Subgroups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a11/}
}
Dave Witte Morris. Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a11/
[1] Borel A., Introduction to arithmetic groups, Amer. Math. Soc., Providence, RI, 2019 | MR | Zbl
[2] Borel A., Tits J., “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55–150 | DOI | MR
[3] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York–London, 1978 | MR | Zbl
[4] Knapp A. W., Lie groups beyond an introduction, Progress in Mathematics, 140, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2002 | DOI | MR | Zbl
[5] Lubotzky A., Mozes S., Raghunathan M. S., “Cyclic subgroups of exponential growth and metrics on discrete groups”, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 735–740 | MR | Zbl
[6] Lubotzky A., Mozes S., Raghunathan M. S., “The word and Riemannian metrics on lattices of semisimple groups”, Inst. Hautes Études Sci. Publ. Math., 91 (2000), 5–53 | DOI | MR | Zbl
[7] Morris D. W., Introduction to arithmetic groups, Deductive Press, 2015, arXiv: math.DG/0106063 | MR | Zbl
[8] Platonov V., Rapinchuk A., Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994 | MR | Zbl
[9] Popov V. L., “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector fiberings”, Math. USSR Izv., 8 (1974), 301–327 | DOI | MR
[10] Rosengarten Z., Picard groups of linear algebraic groups, arXiv: 1806.10292
[11] Tits J., “Classification of algebraic semisimple groups”, Algebraic Groups and Discontinuous Subgroups (Boulder, Colo., 1965), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 1966, 33–62 | DOI | MR
[12] Tits J., “Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque”, J. Reine Angew. Math., 247 (1971), 196–220 | DOI | MR | Zbl