Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We say that a subset $X$ quasi-isometrically boundedly generates a finitely generated group $\Gamma$ if each element $\gamma$ of a finite-index subgroup of $\Gamma$ can be written as a product $\gamma = x_1 x_2 \cdots x_r$ of a bounded number of elements of $X$, such that the word length of each $x_i$ is bounded by a constant times the word length of $\gamma$. A. Lubotzky, S. Mozes, and M.S. Raghunathan observed in 1993 that ${\rm SL}(n,{\mathbb Z})$ is quasi-isometrically boundedly generated by the elements of its natural ${\rm SL}(2,{\mathbb Z})$ subgroups. We generalize (a slightly weakened version of) this by showing that every $S$-arithmetic subgroup of an isotropic, almost-simple ${\mathbb Q}$-group is quasi-isometrically boundedly generated by standard ${\mathbb Q}$-rank-1 subgroups.
Keywords: arithmetic group, quasi-isometric, bounded generation, discrete subgroup.
@article{SIGMA_2020_16_a11,
     author = {Dave Witte Morris},
     title = {Quasi-Isometric {Bounded} {Generation} by ${\mathbb Q}${-Rank-One} {Subgroups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a11/}
}
TY  - JOUR
AU  - Dave Witte Morris
TI  - Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a11/
LA  - en
ID  - SIGMA_2020_16_a11
ER  - 
%0 Journal Article
%A Dave Witte Morris
%T Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a11/
%G en
%F SIGMA_2020_16_a11
Dave Witte Morris. Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a11/

[1] Borel A., Introduction to arithmetic groups, Amer. Math. Soc., Providence, RI, 2019 | MR | Zbl

[2] Borel A., Tits J., “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55–150 | DOI | MR

[3] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York–London, 1978 | MR | Zbl

[4] Knapp A. W., Lie groups beyond an introduction, Progress in Mathematics, 140, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2002 | DOI | MR | Zbl

[5] Lubotzky A., Mozes S., Raghunathan M. S., “Cyclic subgroups of exponential growth and metrics on discrete groups”, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 735–740 | MR | Zbl

[6] Lubotzky A., Mozes S., Raghunathan M. S., “The word and Riemannian metrics on lattices of semisimple groups”, Inst. Hautes Études Sci. Publ. Math., 91 (2000), 5–53 | DOI | MR | Zbl

[7] Morris D. W., Introduction to arithmetic groups, Deductive Press, 2015, arXiv: math.DG/0106063 | MR | Zbl

[8] Platonov V., Rapinchuk A., Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994 | MR | Zbl

[9] Popov V. L., “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector fiberings”, Math. USSR Izv., 8 (1974), 301–327 | DOI | MR

[10] Rosengarten Z., Picard groups of linear algebraic groups, arXiv: 1806.10292

[11] Tits J., “Classification of algebraic semisimple groups”, Algebraic Groups and Discontinuous Subgroups (Boulder, Colo., 1965), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 1966, 33–62 | DOI | MR

[12] Tits J., “Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque”, J. Reine Angew. Math., 247 (1971), 196–220 | DOI | MR | Zbl